
J E R O E N  G R O E N E N D I J K  AND MA RTIN  S T O K H O F  

D Y N A M I C  P R E D I C A T E  L O G I C  

1. I N T R O D U C T I O N  

This paper is devoted to the formulation and investigation of a dynamic 
semantic interpretation of the language of first-order predicate logic. The 
resulting system, which will be referred to as 'dynamic predicate logic', is 
intended as a first step towards a compositional, non-representational 
theory of discourse semantics. 

In the last decade, various theories of discourse semantics have emerged 
within the paradigm of model-theoretic semantics. A common feature of 
these theories is a tendency to do away with the principle of compositional- 
ity, a principle which, implicitly or explicitly, has dominated semantics 
since the days of Frege. Therefore  the question naturally arises whether 
non-compositionality is in any way a necessary feature of discourse seman- 
tics. 

Since we subscribe to the interpretation of compositionality as constitut- 
ing primarily a methodological principle, we consider this to be a method- 
ological rather than an empirical question. As a consequence, the empha- 
sis in the present paper lies on developing an alternative compositional 
semantics of discourse, which is empirically equivalent to its non-composi- 
tional brethren,  but which differs from them in a principled methodolog- 
ical way. Hence,  no attempts are made to improve on existing theories 
empirically. 

Nevertheless, as we indicate in Section 5, the development of a composi- 
tional alternative may in the end have empirical consequences, too. First 
of all, it can be argued that the dynamic view on interpretation developed 
in this paper suggests natural and relatively easy to formulate extensions 
which enable one to deal with a wider range of phenomena than can be 
dealt with in existing theories. 

Moreover,  the various approaches to the model-theoretic semantics of 
discourse that have been developed during the last decade, have consti- 
tuted a 'fresh start' in the sense that much of what had been accomplished 
before was ignored, at least for a start. Of  course, this is a justified strategy 
if one feels one is trying to develop a radically different approach to 
recalcitrant problems. However,  there comes a time when such new ap- 
proaches have to be compared with the older one, and when an assessment 
of the pros and cons of each has to be made. 
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One of the main problems in semantics today, we feel, is that a semantic 
theory such as Montague grammar, and an approach like Kamp's discourse 
representation theory, are hard to compare, let alone that it is possible 
to unify their insights and results. One of the main obstacles is that the 
latter lacks, or has abolished, the principle of compositionality, which is 
so central a feature of the former. Hence, the development of a composi- 
tional alternative to the semantics of discourse may very well have empiri- 
cal import on this score as well: in the end, it may contribute to a uni- 
fication of these two approaches which have largely complementary 
descriptive domains. 

In the extension of modeltheoretic semantics from the sentential to the 
discourse level, various theories have emerged: beside discourse represen- 
tation theory (Kamp, 1981, 1983), we should mention Heim's file card 
semantics (Heim, 1982, 1983), and, in a different framework, the work of 
Seuren (Seuren, 1986). None of these theories makes compositionality its 
starting point. (However, it seems that Heim (1982, ch. 3), does attach 
some value to compositionality.) Since the aim of this paper is restricted 
to showing that a compositional alternative can be developed, and since 
Kamp's discourse representation theory is both self-consciously non-com- 
positional and formally most explicit, we feel justified in restricting com- 
parison to just the latter theory. 

The paper is organized as follows. In Section 2, we introduce the ele- 
ments of dynamic interpretation in a heuristic fashion, discussing a small 
number of well-known problematic cases. In Section 3, we recapitulate 
our findings and formulate the dynamic semantics of predicate logic sys- 
tematically, and study its logical properties. The resulting system is com- 
pared with ordinary predicate logic, discourse representation theory, and 
quantificational dynamic logic in Section 4. In Section 5, we indicate 
prospects for further developments and, in retrospect, we present our 
philosophical and methodological motives. 

To end this introductory section, we remark that Barwise' proposal for 
the interpretation of anaphoric relations within the framework of situation 
semantics (Barwise, 1987), which in Rooth (1987) is compared with Heim's 
file card semantics and with Montague grammar, are akin in spirit and 
content to our approach. So is Schubert and Pelletier (1989). Equally akin 
in spirit, but less in content, is Zeevat (1989). 

2. ELEMENTS OV DYNAMIC INTERPRETATION 

2.1. Cross-sentential and Donkey-anaphora 

We begin this section with a brief discussion of two well-known problems: 
cross-sentential anaphora and anaphoric relations in donkey-sentences. 
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We state them anew, because we want to make clear what, we feel, is the 
real challenge they offer. 

If we use standard first-order predicate logic (henceforth, PL) in trans- 
lating a natural language sentence or discourse, anaphoric pronouns will 
turn up as bound variables. In many cases, this means that in order to 
arrive at formulas which are good translations, i.e., which express the 
right meaning, we have to be pretty inventive, and should not pay too 
much attention to the way in which the natural language sentence or 
discourse is built up. Let us illustrate this with three simple examples, 
which nevertheless are representative for the kind of problems we meet: 

(1) A man walks in the park. He whistles 
(2) If a farmer owns a donkey, he beats it 
(3) Every farmer who owns a donkey, beats it 

In order for the pronoun he in the second sentence of (1) to be anaphor- 
ically linked to a man  in the first sentence, we have to give an existential 
quantifier wide scope over the conjunction of the two sentences involved. 
Doing so, we arrive at (la): 

( la) 3x[man(x) A walk_in_the_park(x) A whistle(x)] 

Now, notice that the translation of the first sentence in (1), which would 
be 3x[man(x) A walk_in_the_park(x)], does not occur as a subformula in 
(la).  Apparently,  we do not get from (1) to ( la)  in a step-by-step, i.e., 
in a compositional way. If we did, we would rather translate (1) as (lb):  

( lb)  3x[man(x) A walk_in_the_park(x)] A whistle(x) 

But this is not a proper  translation of (1), at least not in standard predicate 
logic, since in ( lb)  the last occurrence of the variable x is not bound by 
the existential quantifier, and hence the anaphoric link in (1) is not ac- 
counted for. However,  suppose we could interpret ( lb) in such a way that 
it is equivalent with (1). Evidently, ( lb)  would be preferred to ( la)  as a 
translation of (1), since it could be the result of a compositional procedure. 

Turning to examples (2) and (3), we observe that a proper  translation 
in PL for both of them is (2a): 

(2a) VxVy[[ fa rmer (x )  A donkey(y)  A own(x, y)] 
beat(x,  y)] 

These cases are more dramatic than the previous one. Although (2) and 
(3) contain indefinite terms, which normally translate as existentially qu- 
antified phrases, we need universal quantification to account for their 
meaning in these kinds of examples. And notice, moreover,  that the 
corresponding universal quantifiers Vx and Vy have to be given wide scope 
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over the entire formula, whereas the indefinite terms in (2) and (3) to 
which they correspond, appear inside the antecedent of an implication in 
the case of (2), and way inside the relative clause attached to the subject 
term e v e r y  f a r m e r  in the case of (3). If we use PL as our means to 
represent meaning, these kinds of examples prevent us from uniformly 
translating indefinite terms as existentially quantified phrases. Again, this 
constitutes a breach of the principle of compositionality, a principle which 
is not only intuitively appealing, but also theoretically parsimonious and 
computationally plausible. 

From a compositional point of view, translations like (2b) for sentence 
(2), and (3b) for sentence (3), are to be preferred: 

(2b) 

(3b) 

3x[farmer(x) A 3y[donkey(y) A own(x, y)]] 
--+ beat(x, y) 

Vx[[farmer(x) A 3y[donkey(y) A own(x, y)]] 
--+ beat(x, y)] 

But then again, (2b) and (3b) do not have the proper meaning in PL. For 
one thing the occurrences of the variable y in case of (3b), and of the 
variables x and y in case of (2b), in the respective consequents, are not 
bound by the existential quantifiers in the antecedents. Hence, (2b) and 
(3b) are not equivalent with (2a), at least not in PL. 

Examples like (1)-(3) have been treated successfully in discourse repre- 
sentation theory (henceforth DRT), but at a cost: the problem of providing 
a compositional translation is not really solved, and DRT uses a rather 
non-orthodox logical language. In DRT, (1) would be represented as (lc), 
(2) and (3) as (2c): 

(lc) 
(2c) 

[x] [man (x), walk_in_the_park (x), whistle (x)] 
[ ][[x, y][farmer(x), donkey(y),  own(x, y)] 

[ ][beat(x, y)]] 

We will not go into the semantics of these discourse representation struc- 
tures here (cf. Section 4.2), for the moment it suffices to note that (lc) 
and (2c) have essentially the same truth conditions as (la) and (2a) respec- 
tively. The important thing, however, is that these representations differ 
in structure from the corresponding sentences in much the same way as 
the PL-translations. In fact, the structure of (lc) is essentially that of (la),  
and not that of (lb). And in (2c) no representation of the relative clause 
w h o  o w n s  a d o n k e y  or of the intransitive verbphrase o w n  a d o n k e y  - 

which form a constituent in (2) and (3) respectively - can be isolated as 
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a substructure of (2c). So, from a compositional point of view, they are 
hardly a change for the better. For the moment  we leave it at this obser- 
vation, but we return to the issue in some detail in Section 4.2. 

In this paper we give an alternative account of the phenomena exempl- 
ified by (1)-(3);  we do so by replacing the standard semantics of the 
language of first-order predicate logic by a dynamic semantics, which is 
inspired by systems of dynamic logic as they are used in the denotational 
semantics of programming languages. (See Harel  (1984) for an overview.) 
The resulting system of dynamic predicate logic (henceforth, DPL) consti- 
tutes an improvement over D R T  in the following sense: to the extent that 
this is possible in a first-order language at all, it gives a compositional 
semantic treatment of the relevant phenomena,  while the syntax of the 
language used, being that of standard predicate logic, is an orthodox one. 
More specifically, using DPL it becomes possible to represent the mean- 
ings of the sentences (1), (2) and (3) by means of the formulas ( lb) ,  (2b) 
and (3b). AS we remarked above, such representations are to be preferred 
from a compositional and a computational point of view. The dynamic 
semantics of DPL makes sure that ( lb)  comes out with the same truth 
conditions as ( la)  is assigned in PL, and that (2b) and (3b) come out with 
the same truth conditions as ( la)  and (2a) have in PL. 

2.2. The Dynamic View on Meaning 

The general starting point of the kind of semantics that DPL is an instance 
of, is that the meaning of a sentence does not lie in its truth conditions, 
but rather in the way it changes (the representation of)  the information 
of the interpreter.  The utterance of a sentence brings us from a certain 
state of information to another one. The meaning of a sentence lies in the 
way it brings about such a transition. Although this 'procedural '  dynamic 
view on meaning as such is not particular to semantic theories of discourse 
(it can also be found in theories about sentence meaning, e.g., in the work 
of Stalnaker), it is a view which is endorsed by all approaches to discourse 
semantics which we referred to above. 

It should be noted, though, that in most cases one really studies only 
one particular aspect of the information change potential that makes up 
the meaning of a sentence, at a time. For example, in the standard version 
of DRT,  information change is narrowed down to the (im)possibilities 
of subsequent anaphoric reference that sentences determine. All other 
information that a sentence conveys, is treated in a static, rather than in 
a dynamic fashion. DPL is like D R T  in this respect. It, too, restricts the 
dynamics of interpretation to that aspect of the meaning of sentences that 
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concerns their potential to 'pass on' possible antecedents for subsequent 
anaphors, within and across sentence boundaries. (See Groenendijk and 
Stokhof (1988) for some more discussion of this point.) 

As has been observed by several authors, there is a strong correspon- 
dence between the dynamic view on meaning, and a basic idea underlying 
the denotational approach to the semantics of programming languages, 
viz., that the meaning of a program can be captured in terms of a relation 
between machine states. Given the restriction to antecedent-anaphor re- 
lations, the observed correspondence comes down to the following. A 
machine state may be identified with an assignment of objects to variables. 
The interpretation of a program can then be regarded as a set of ordered 
pairs of assignments, as the set of all its possible ' input-output'  pairs. A 
pair (g, h) is in the interpretation of a program ~r, if when 7r is executed 
in state g, a possible resulting state is h. 

For example, the execution of an atomic program consisting of a simple 
assignment statement 'x := a' transforms a state (assignment) g into a state 
(assignment) h which differs from g at most with respect to the value it 
assigns to x, and in which the object denoted by the constant a is assigned 
to x. 

Another  simple illustration is provided by sequences of programs. The 
interpretation of a sequence of programs '~-~; 7r2' is as follows. It can take 
us from state g to h, if there is some state k such that the program 7r~ can 
take us from g to k, and 7r2 from k to h. Or to put it differently, the 
second program is executed in a state which is (partly) created by the 
first. 

As we intend to show in this paper, the basic idea that (certain aspects 
of) meaning can be described in terms of relations between states, can 
be applied fruitfully in natural language semantics as well. It should be 
remarked, though, that the aims and perspectives of systems of dynamic 
logic as they are used in the semantics of programming languages, are 
rather different from the purpose for which we want to use the system to 
be developed below. And consequently, there are differences between 
these systems as such. Some discussion of these matters can be found in 
Section 4.3. 

2.3. Dynamic Conjunction and Existential Quantification 

In the present and the next two sections, we introduce a dynamic interpret- 
ation for the language of extensional first-order predicate logic in a step- 
by-step fashion, deferring an explicit statement and a formal investigation 
of DPL to Section 3. In the present section we introduce dynamic conjunc- 
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tion and existential quantification, which will enable us to deal with the 
first of the three examples discussed above, which concerned cross-senten- 
tial anaphora. In Section 2.4, we discuss implication and existential quanti- 
fication. Their  dynamic treatment will give us the means to treat simple 
donkey-sentences, such as exemplified by the second example. And finally 
in Section 2.5, we turn to universal quantification and negation in order 
to be able to deal with the more complicated donkey-sentences as exempl- 
ified by the last example. 

The vocabulary of DPL consists of n-place predicates, individual con- 
stants and variables. They are interpreted in the usual fashion. The models 
that we use, are ordinary extensional first-order models, consisting of a 
domain D of individuals and an interpretation function F, assigning indi- 
viduals to the individual constants, and sets of n-tuples of individuals to 
the n-place predicates. Further,  we use assignments as usual, i.e., as total 
functions from the set of variables to the domain. They are denoted by 
'g', 'h', and so on. By "h[x]g' we mean that assignment h differs from g 
at most with respect to the value it assigns to x. When in what follows we 
speak of the interpretation of an expression, we mean its semantic value 
in a suitable model. The function assigning semantic values is denoted by 
,~ ~,. 

In the standard semantics of predicate logic, the interpretation of a 
formula is a set of assignments, viz., those assignments which verify the 
formula. In the dynamic semantics of DPL the semantic object expressed 
by a formula is a set of ordered pairs of assignments. Trading on the 
analogy with programming languages, such pairs can be regarded as pos- 
sible ' input-output '  pairs: a pair (g, h) is in the interpretation of a formula 
~b iff when ~b is evaluated with respect to g, h is a possible outcome of the 
evaluation procedure. Since g and h are assignments of objects to vari- 
ables, the difference between an input assignment g and an output assign- 
ment h can only be that a different object is assigned to one or more 
variables. This is precisely what happens when an existentially quantified 
formula is interpreted dynamically. Consider the formula 3xPx. In the 
standard semantics, an assignment g is in the interpretation of 3xPx iff 
there is some assignment h which differs from g at most with respect to 
the value it assigns to x, and which is in the interpretation of Px, i.e., 
which assigns an object h(x) to x such that h(x) E F(P). When 3xPx is 
treated dynamically, all assignments h such that h[x]g & h(x) ~ F(P), are 
taken to be possible outputs with respect to input g. In other words: 

~3xPx~ = {(g, h)[h[x]g & h(x) E F(P)} 

This will not yet do for the general case of 3xqS. We have to reckon with 
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the possibility that the interpretation of q% too, has dynamic effects. (For 
example, ¢b itself might be an existentially quantified formula.) Taking 
this into account, the dynamic interpretation of 3x~b will consist of those 
pairs of assignments (g, h) such that there is some assignment k which 
differs from g at most in x and which together with h forms a possible 
input-output pair for oh. The interpretation clause for existentially quant- 
ified formulas then reads as follows: 

[[3x~b~ = {(g, h)13k: k[x]g & (k, h) E ~4)]1} 

In order to show that this interpretation of 3xq5 squares with the one 
given above for 3xPx ,  we first have to state the interpretation of atomic 
formulas. 

Unlike existentially quantified formulas, atomic formulas do not have 
dynamic effects of their own. Rather, they function as a kind of 'test' on 
incoming assignments. An atomic formula tests whether an input assign- 
ment satisfies the condition it embodies. If so, the assignment is passed 
on as output, if not it is rejected. So, the dynamics of an atomic formula 
consists in letting pass the assignments which satisfy it, and blocking those 
that don't. This is captured in the following definition: 

~Rt~ . . . t,,]l = {(g, h) lh  = g & (~t~]], . . . . . .  ~t,,~,,) e F(R)} 

Here, as usual, ~t~h = F(t) if t is an individual constant, and [[tlh = h(t) if 
t is a variable. 

We first work out our simple example of an existentially quantified 
formula 3xPx:  

~3xPx~ = {(S, h) l 3k: k[x]g & (k, h) • ~Px~} = 
{<g, h>13k: k[x]g & k = h a h(x)  • F(P)}} = 
{(g, h) lh[x]g & h(x)  • F(P)} 

This example illustrates the interpretation of the existential quantifier and 
that of atomic formulas. The meaning of 3 x P x  determines that for a given 
input assignment g, we get as possible outputs those assignments h which 
differ from g at most in x and which satisfy the condition that the individual 
h(x) has the property F(P) .  

The dynamic interpretation of existential quantification presented here 
is only one ingredient of a treatment of cross-sentential anaphoric binding 
as it was illustrated by the first example discussed in Section 2.1. The 
example consists of a sequence of two sentences, the first of which contains 
an indefinite term which functions as the antecedent of an anaphoric 
pronoun occurring in the second sentence. Although this obviously is not 
all there is to it, within the framework at hand, simple sentence sequencing 
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is best represented as conjunction. Going about compositionally, what we 
get in this case is a conjunction consisting of an existentially quantified 
formula and a formula containing a free occurrence of the variable corre- 
sponding to the quantifier. The simplest example of a formula that is of 
this form is 3xPx A Qx. 

To get the required interpretation for this kind of formula, a dynamic 
interpretation of existential quantification alone does not suffice, we need 
a dynamic treatment of conjunction as well. For example, in order to get 
the required anaphoric reading we have to interpret 3xPx A Qx in such 
a way that the second occurrence of x, which is outside the scope of the 
quantifier, is bound by that quantifier with the same force as the first 
occurrence of x, which is inside its scope. 

So the first thing we require of the dynamic interpretation of conjunction 
is that it passes on values of variables from the first conjunct to the second. 
Moreover,  we note that values assigned to variables in a conjunction 
should remain available for further conjuncts that are added. If we con- 
tinue the discourse 'A man walks in the park. He meets a woman' with 
'He kisses her ~, we must view this as adding another conjunct. And this 
newly added conjunct may contain 'free'  occurrences of variables (pro- 
nouns) which nevertheless are bound by existential quantifiers (indefinite 
terms) which have occurred earlier on. 

In fact, this is exactly what the interpretation of a sequence of programs 
as described above amounts to. Hence,  our definition of dynamic conjunc- 
tion is the following: 

According to this definition, the interpretation of & A O with input g may 
result in output h iff there is some k such that interpreting q5 in g may 
lead to k, and interpreting O in k enables us to reach h. 

We are now fully equipped to deal with the first of the three examples 
discussed above, which concerned cross-sentential anaphora. Calculating 
the interpretation of 3xPx A Qx shows that indeed the binding effects of 
an existential quantifier may reach further than its scope, more in parti- 
cular they reach over further conjuncts: 

~3xPx A Qx~ = {{g, h}jBk: {g, k) E [[3xPx]] & (k, h) ~ ~Qx] } = 
{(g,h}13k: k[x]g & k(x)  E F(P) & h = k & h(x) ~ F(Q)} = 
{{g, h)lh[x]g & h(x) ~ F(P) & h(x) ~ F(Q)} 

Here ,  we see that the occurrence of x in the second conjunct Qx, although 
it is not in the scope of the quantifier 3x in the ordinary sense, is neverthe- 
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less bound by it with the same force as the occurrence of x in Px in the 
first conjunct, which obviously is in the scope of 3x. This means that in 
DPL there is no difference in meaning between the formula 3xPx/x Qx 
and the formula 3x[Px A Qx]. From the latter fact it is also clear that if 
we continue a conjunction ~ A ~ with a further conjunct %, the binding 
force of quantifiers in either one of the conjuncts ~ and ~O will remain 
active. 

Because of its power to pass on variable bindings from its left conjunct 
to the right one, we call conjunction an internally dynamic connective. 
And because of its capacity to keep passing on bindings to conjuncts yet 
to come, we call it an externally dynamic connective as well. For similar 
reasons, the existential quantifier is called both internally and externally 
dynamic: it can bind variables to the right, both inside and outside its 
scope. 

It is precisely this feature of DPL,  that it allows for existential quantifiers 
to bind variables yet to come which are outside their scope, that lends it 
the power to solve the problem of getting a compositional treatment of 
antecedent-anaphor relations which go across sentence boundaries. It al- 
lows us to translate the sentence containing the antecedent indefinite term, 
without having to look ahead at what is still to come, treating it as an 
ordinary existentially quantified phrase. Then we can translate a sentence 
which follows and which contains an anaphor, without having to re-analyze 
the translation so-far, regarding the anaphoric pronoun as an ordinary 
variable. The dynamic semantics takes care of the rest. It makes sure 
that the pronoun is treated as a variable bound by the quantifier which 
corresponds to the indefinite term. 

2.4. Dynamic Existential Quantification and Implication 

The second kind of example which we introduced in Section 2.1, concerns 
simple donkey-sentences. The main problem of donkey-sentences is the 
occurrence of an indefinite term in the antecedent of an implication which 
is anaphorically linked to a pronoun in the consequent. As we indicated 
above, if we are to represent the meaning of such sentences in ordinary 
predicate logic, which allows quantifiers to bind only those variables which 
occur in their syntactic scope, then we are forced to regard the indefinite 
term as a universal quantifier and to give it wide scope over the implication 
as a whole. This goes against compositionality in two ways: first of all, we 
cannot use the ordinary, lexically determined meaning of indefinite terms, 
and secondly, we must deviate from the syntactic structure by 'raising' 
these terms from their position in the antecedent to a position outside the 
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implication. In order to show that this kind of example can be treated in 
DPL in a more compositional, and hence more satisfactory way, we have 
to say what the dynamic interpretation of implication is. 

The simplest example of a formula corresponding to a donkey-sentence 
is 3xPx --+ Qx. In order  for this formula to get the required interpretation, 
the dynamic interpretation of implication has to allow for an existential 
quantifier in its antecedent to bind a variable in its consequent. This means 
that implication is like conjunction in the following respect: it passes on 
values assigned to variables in its antecedent to its consequent. In other 
words, implication is an internally dynamic connective. 

But that is not all. We also observe that the existential quantifier in the 
antecedent has universal force. This can be accounted for as follows. With 
respect to an input assignment, the antecedent of an implication results 
in a set of possible output assignments. For the implication as a whole, it 
seems reasonable to require that every assignment that is a possible output 
of the antecedent,  be a possible input for the consequent. By this we 
mean that an output assignment h of the antecedent,  when taken as input 
to the consequent,  should result in at least one output assignment k. In 
other words, the interpretation of an implication 05--+ ~ should be such 
that for every pair (g,h) in the interpretation of 05 there is some assignment 
k such that (h,k) is in the interpretation of ~. This feature of the interpret- 
ation of implication results in universal force of an existential quantifier 
occurring in the antecedent.  Consider 3xPx-+ Qx. With respect to an 
input assignment g, the antecedent 3xPx results in the set of assignments 
h such that h[x]g and h(x) E F(P). If we require, as we do, that every 
such h should be a proper  input of the consequent Qx, the result is that 
every h such that h(x) E F(P), also satisfies h(x) E F(Q). 

This does not yet determine which pairs of assignments constitute the 
interpretation of 05 ~ ~0, it only tells us with respect to which assignments 
05 ~ ~0 can be 'successfully executed'.  To get at the full interpretation of 
05-+ & we need yet another  observation, which is that normally an impli- 
cation as a whole does not pass on values assigned to variables by quantifi- 
ers in the implication itself, to sentences yet to come. Consider the follow- 
ing example: 

(4) If a farmer owns a donkey, he beats it.* He hates it 

In this example, the pronouns he and it in the second sentence cannot be 
anaphorically linked to the indefinite terms in the preceding implication. 
And quite generally it is concluded on the basis of examples such as these 
that a quantifier which occurs inside an implication, be it in the antecedent 
or in the consequent,  cannot bind variables outside the implication. (A 
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lot more needs to be said about this, and for some of it we refer to Section 
5.1.) In this respect implication is unlike conjunction: it is not externally 
dynamic; like an atomic formula, an implication as a whole has the charac- 
ter of a test. 

What we thus end up with as the dynamic interpretation of implication, 
is the following: 

~[4~ ~ 01 = {(g, h)lh = g & Vk: (h, k) ~ ~qS~ ~ 3j: (k, j) E ~t)~} 

The interpretation of cb--+ ~ accepts an assignment g iff every possible 
output of 4) with respect to g leads to a successful interpretation of 4', and 
it rejects g otherwise. Armed with this definition, we can now proceed to 
show that DPL assigns the required interpretation to formulas which 
correspond to the kind of donkey-sentences exemplified by our second 
example. By way of illustration, we work out the interpretation of the 
formula 3xPx ~ Qx: 

3x Px --~ Qx~ -- 
{(g, h) lh = g & Vk: (h, k) ~ [3xPx~ ~ 3j: (k, j} ~ ~Qx~} : 
{(g, g)lVk: (g, k) e ~3xPx~ ~ 3j: {k, j) e ~Qx~} =- 
{{g, g)]Vk: k[x]g & k(x) E F(P) ~ k(x)  ~ F(Q)} 

This example shows that the binding effects of an existential quantifier 
occurring in the antecedent of an implication extend to occurrences of 
the corresponding variable in the consequent, and that such a quantifier 
occurrence has universal force. It also shows that dynamic effects are 
restricted to the implication as such, and are not passed on to any formulas 
which might follow it. In effect, as we shall see below, 3xPx ~ Qx is 
equivalent in DPL to Vx[Px --* Qx]. 

2.5. Universal Quantification, Negation and Disjuriction 

For a treatment of the second, more complicated kind of donkey- 
sentences, exemplified by our third example, we need to state the interpre- 
tation of the universal quantifier. One aspect of this interpretation is 
illustrated by the following two examples: 

(5) 
(6) 

Every man walks in the park.* He whistles 
Every farmer who owns a donkey beats it.* He hates it 

The pronoun he occurring in the second sentence of (5), cannot be in- 
terpreted as being anaphorically linked to the universal term in the sen- 
tence preceding it. Nor can the pronouns he and it in the second sentence 
of (6) be anaphorically linked to the terms every farmer and a donkey in 
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the first sentence of (6). Generally, from examples such as these it is 
concluded that the universal quantifier shares with implication the charac- 
teristic of being externally static. Neither a universal quantifier itself, nor 
any existential quantifier inside its scope can bind variables outside the 
scope of that universal quantifier. (Again, we refer to Section 5.1 for some 
discussion of this point.) But, of course, inside the scope of a universal 
quantifier dynamic effects may very well occur, as the donkey-sentence 
(3) shows. This leads to the following definition of the interpretation of 
universal quantification: 

~Vx6]] = {(g, h)lh = g &  Vk: k[xlh @ 3m: (k, m) ¢ ~6~} 

So, a universally quantified formula 'v'x~b, too, functions as a test. An 
input assignment g is passed on iff every assignment that differs at most 
from g in x is a proper input for qS, otherwise it is blocked. An output 
assignment is always identical to the corresponding input. 

That the dynamic interpretation of the universal quantifier, together 
with that of the existential quantifier and implication, allows us to deal 
with the donkey-sentence (3) in the manner discussed at the beginning of 
this section, is shown by working out the interpretation of a formula that 
exhibits the relevant structure: 

~Vx[[Px /x 3y[O s /x  Rxy]] ~ Sxy]~ = 
{(g, h)lh = g & Vk: k[x]h ~ 3rn: (k, m) E 
~[Px /x 3y[Qy /x Rxy]] ~ Sxy~} = 
{(g, g)lVk: k[x]g ~ (Vj: (k, j) 
[[Px /~ =ly[Qy /x Rxy]]] ~ 3z: (j, z} e [[Sxy]])} = 
{(g, g)lVk: l~[x]g & l¢(x) E F(P) 
(W: j[y]k & j(y) ~ F(Q) & (j(x),j(y)) 
F(R) ~ (j(x), j(y)) E F(S))} = 
{(g, g)lVh: h[x, ylg & h(x) ~ F(P) & 
h(y) E F(Q) & (h(x), h(y)) ~ F(R) ~ (h(x), h(y)) E F(S)} 

This example illustrates that the dynamic semantics of DPL enables us to 
treat the more complicated type of donkey-sentences, too, in a straightfor- 
ward, intuitive and compositional manner. DPL allows us to translate an 
indefinite term uniformly as an existentially quantified phrase in situ, i.e., 
when and where we encounter it in a structure, without any need of re- 
analysis. We can treat a pronoun which is anaphorically linked to such a 
term simply as a variable corresponding to the quantifier. The dynamic 
interpretation of the existential quantifier and of the implication, ensures 
that the proper bindings result, and that the indefinite term has the re- 
quired universal force. 
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Within the limits set by a first-order language, the account we have 
given above of cross-sentential anaphora and donkey-sentences, is as com- 
positional as can be. Using DPL as our semantic representation language, 
we can proceed to obtain representations of the meanings of simple natural 
language discourses in an on-line, more or less left-to-right manner,  guided 
by the ordinary syntactic structures and the usual lexical meanings of the 

phrases we encounter.  
We conclude this section by stating the interpretation of negation and 

disjunction. Negation is like implication and universal quantification in 
that it, too, normally blocks anaphoric links between a term that occurs 
in its scope, and a pronoun outside of it, i.e., negation is static. (More 
on this in Section 5.1.) The following two examples illustrate this: 

(7) It is not the case that a man walks in the park. *He whistles. 
(8) No man walks in the park. *He whistles. 

Hence,  the interpretation of a negation ~ 4~ will be of the type of a test: 
it returns an input assignment g iff q5 can not be successfully processed. 

If q5 can be successfully processed with respect to g as input, g is blocked 

by ~ 4~: 

[[-n ~bl] = {(g, h) lh = g & -7 3k: (h, k) E ~eh~ } 

The following example, which has the structure of such sequences of 
sentences as (7) and (8), illustrates how negation works: 

~ 3xPx A Qx~ = 
{(g, h) 13k: (g, k) E ~ 3xPx~ & (k, h) • ~Qx~} = 
{(g, h) 13k: (g, k) • ~-n 3xPx~ & h = k & h(x) • F(Q)} = 
{(g, h) l(g, h) • ~ 3xPx~ & h(x) • F(Q)} = 
{<g, h)Lh = g 8: ~ 3k: (h, k) • {(g, h)Jh[xlg 
& h(x) • F(P)} & h(x) • F(Q)} = 
{(g,h}lh = g & ~ 3 k :  k[x]h & k(x) • 
F(P) & h (x) • F(Q)} = 
{(g, g) l ~ 3k: k[x]g & k(x) • F(P) & g(x) • F(Q)} 

As we can see, the first conjunct, being a negation, does not change the 
assignment with respect to which the second conjunct is interpreted. The 
test-like character of a negation leaves the occurrence of x in the second 
conjunct unbound by the existential quantifier which occurs within its 
scope in the first conjunct. This means that, whereas 3xPx A Qx and 
Qx /x 3xPx differ in meaning, ~ 3xPx A Qx is equivalent to Qx A -7 3xPx. 

As for disjunction, it shares the feature of being externally static with 
implication, negation and the universal quantifier. It, too, tests an input 
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assignment g, and the condition it embodies is that at least one of its 
disjuncts be interpretable successfully with g as input. Only if this condition 
is met,  g is returned as output: 

[[05 v ~O]] = {(g, h) lh = g & 3k: (h, k) ~ [[05~ v <h, k) ~ ~ }  

According to this interpretation of disjunction, no antecedent-anaphor 
relations are possible between the disjuncts, i.e., disjunction is not only 
externally, but also internally static. We will come back to this in Sections 
4.3 and 5.1. 

This concludes our introduction of the ingredients of DPL. In the next 
section, we will present DPL more systematically, and investigate some 
of the logical facts touched upon above in somewhat more detail. 

3. D P L ,  A S Y S T E M  O F  D Y N A M I C  P R E D I C A T E  L O G I C  

This section is devoted to a formal study of the DPL-system. In Section 
3.1, we present its syntax and semantics systematically. Section 3.2 con- 
tains definitions of some basic semantic notions, such as truth and equiva- 
lence. In Section 3.3, we turn to the subject of scope and binding, and in 
Section 3.4, we state some logical facts. Section 3.5 is concerned with the 
notion of entailment. 

3.1. Syntax and Semantics 

The non-logical vocabulary of DPL consists of: n-place predicates, individ- 
ual constants, and variables. Logical constants are negation 7 ,  conjunction 
A, disjunction v ,  implication -+, the existential and universal quantifiers 
3 and V, and identity =. 

DEF I NI TI ON 1 (Syntax). 

1. If t, . . . . .  t,, are individual constants or variables, R is an n-place 
predicate, then R t , . . .  t,, is a formula. 

2. If tl and t2 are individual constants or variables, then t~ = t2 is a 
formula. 

3. If 05 is a formula, then ~ 05 is a formula. 
4. If 05 and 0 are formulas, then [05 A 4'] is a formula. 
5. If 05 and ~ are formulas, then [05 v q,] is a formula. 
6. If 05 and 0 are formulas, then [05 --+ ~] is a formula. 
7. If 05 is a formula, and x is a variable, then 3x05 is a formula. 
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8. If  q~ is a formula,  and x is a variable, then Vx(h is a formula. 

9. Nothing is a formula except on the basis of 1-8. 

So, the syntax of D P L  is that of ordinary predicate logic. 
A model  M is a pair (D, F), where D is a non-empty set of individuals, 

F an interpretation function, having as its domain the individual constants 
and predicates. If a is an individual constant, then F(a) ~ D; if oz is an 

n-place predicate,  then F ( a  ) C C_ D". An assignment g is a function assigning 

an individual to each variable: g(x) E D. G is the set of all assignment 
functions. Next,  we define [[t]]g = g(t) if t is a variable, and ~t~g = F(t) if t 
is an individual constant. Finally, we define the interpretation function 
{[ ]I DPL C G × G as follows. (As usual, we suppress subscripts and super- 

scripts whenever this does not give rise to confusion.) 

D E F I N I T I O N  2 (Semantics). 

1. ~Rtl . . . tn~ = {(g, h)[h = g & ([[ttl], . . . .  [[tn~h) ~ F(R)}.  
2. [[h = t2~ = {(g, h) jh  = g & ~ t ~ h  = ~tz~h}. 
3. [[-7 ~b]] = {(g, h}lh = g &  ~ 3 k :  (h, k) ~ [[qS]]}. 
4. [[q5 A 0]] = {(g, h)13k: (g, k) E ~b~ & <k, h) ~ {[0]]}. 
5. [[4~ v ~]] = {(g, h) lh = g & 3k:  (h, k) ~ [[~h~ v (h, k) ~ [[0~}. 
6. [[6 ~ t)]l = {(g, h) lh = g & Vk: (h, k) e {[qS~ ~ 3j: (k, j) e [[+l]}. 
7. [[3xO~ = {(g, h)13k: k[x]g & (k, h) ~ [[4,11}. 
8. [[Vx~b~ = {(g, h)lh  = g & Vk: k[x]h ~ 3j: ( k , j )  E ~ch~}. 

Besides the clauses that were discussed in the previous section, Definition 
2 also contains a clause which gives the interpretation of identity state- 
ments. It  will come as no surprise that such statements are interpreted as 

tests. 

3.2. Meaning, Truth and Equivalence 

The notion of the interpretation of a formula that the semantics of DPL 
specifies, differs from the one we are familiar with from PL. The latter 
can be given in the form of a recursive specification of a set of assignments, 
those which satisfy a formula, whereas the semantics stated above defines 
a recursive notion of a set of pairs of assignments, those which are proper  
input-output pairs. 

The notion of interpretation of PL brings along a notion of truth with 
respect to an assignment which is defined as follows: q5 is true with respect 
to g iff g is an element  of the set denoted by 4~. In the present,  essentially 
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richer scheme a similar notion can be defined. We call a formula true with 
respect to an assignment g in a model M iff with g as input, it has an 
output: 

DEFINITION 3 (Truth). q5 is true with respect to g in M iff 
3h: (g, h) E ~qS~a,,. 

In terms of this notion, we define when a formula is valid and when it is 
a contradiction: 

DEFINITION 4 (Validity). q5 is valid iff VMVg: 0 is true with respect to 
g i n  M. 

DEF INI TI ON 5 (Contradictoriness). ~b is a contradiction iff VMVg: ch is 
false with respect to g in M. 

Notice that the interpretation of any contradiction is always the empty 
set. For valid formulas things are different: no unique semantic object 
serves as their interpretation. They either denote the identity relation on 
G, or a certain extension of this. For example, Px v ~ Px always denotes 
the set of all pairs (g, g), but 3x[Px v ~ Px] denotes the set of all pairs 
(g, h) such that h differs at most with respect to x from g. Both formulas 
are valid according to Definition 4, since both are true with respect to any 
g in any M. So, whereas semantically there is only one contradiction, 
there are many different tautologies. What distinguishes these can be 
expressed in terms of the variables they bind. 

The set of all assignments with respect to which a formula is true in M, 
we call its satisfaction set in M,  and we denote it by ' \  \ M': 

DEF I NI TI ON 6 (Satisfaction set). \~h\M = {gl 3h: (g, h) ¢ ~b~M}. 

So, truth with respect to g in M can also be defined as g E \~b\M, validity 
as \&\M = G for every M, and contradictoriness as \qS\M = 0 for every M. 

The notion of a satisfaction set is of the same type as the notion of 
interpretation in PL. But truth conditions do not exhaust dynamic mean- 
ing. The satisfaction set of a compound formula can not always be defined 
in terms of the satisfaction sets of its compounds, it is determined by its 
compositional interpretation in terms of the notion ~ l]. The latter gives 
the building blocks of meaning. And meaning in its turn determines, 
globally but not locally, what the truth conditions of compound ex- 
pressions are. 
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These considerations make clear that the notion of equivalence of stan- 
dard logic, that of two formulas having the same truth conditions, although 
definable in DPL in terms of the notion of a satisfaction set, has only a 
marginal role to play. We call it s-equivalence, and denote it by ~-,.': 

DEFINITION 7 (s-equivalence). 4~-~, 0 @ VM: \q~\ M = \ 0 \  M. 

Full equivalence of two formulas requires that their interpretations be the 
same in every model. We call it equivalence simpliciter, and denote it by 

DEFINITION 8 (Equivalence). 4)= 04::)VM: [[qS~M = [[O~g" 

Of course, if two formulas are equivalent they will also have the same 
satisfaction set, i.e. they will be s-equivalent: 

F A C T 1 .  ~b-~O~&-~sO.  

The reverse does not hold. For example, 3xPx and 3yPy have the same 
satisfaction sets, G or ft, but they differ in meaning, since they produce 
different output assignments, viz., {hlh(x) E F(P)} and {hlh(y) E F(P)} 
respectively. The first formula has the potential to bind free occurrences 
of x in formulas to come, and the second has the potential to bind occur- 
rences of y. We can formulate this in terms of the notion of the production 
set of a formula, the set consisting of those assignments which are its 
possible outputs, which we write as '/ /M': 

DEFINITION 9 (Production set). 1~)1~, 1 7--. {hl3g: (g, h) ~ ~d)~M}. 

Whereas the satisfaction sets of 3xPx and 3yPy are the same, their produc- 
tion sets are different. If two formulas always have the same production 
set, we call them p-equivalent, denoted by '-~p': 

DEFINITION 10 (p-equivalence). ~b ~--p I/]~ ::} VM:/eh/M =/~1/M. 

Of course, analogous to the previous fact, we have: 

FACT 2. ch -~ 0 ~ 4~ = p  ~" 

So, if two formulas have the same meaning, they always have the same 
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satisfaction set and the same production set. However ,  the reverse does 

not hold: 

F A C T  3. ~b = ,  to & & - p  to ~ q5 = tO. 

If two formulas always have the same satisfaction set and always the same 

production set, this does not imply that they have the same meaning. So, 

meaning can not be defined in terms of satisfaction and production sets. 
Consider the following simple example.  The two tautologies Px v ~ Px 
and 3x[Px v -~Px]  both have the total set of assignments G as their 
satisfaction set and as their production set. But, as we have seen above,  

their meanings are different. The interpretation of the former  is {(g, h)]g = 
h}, and that of the latter is {(g, h)]h[x]g}. 

We end this section with the definitions of two other notions that will 
prove useful for what is to come. 

As we have seen in the previous section, various kinds of DPL-formulas  
have the characteristic that they do not pass on bindings created by ex- 

pressions which occur in them. They function as a kind of ' test '  in this 
sense that they examine whether  an input assignment meets a certain 

condition, return it as output if it does, and reject it otherwise. Seman- 
tically, they can be characterized as follows: 

D E F I N I T I O N  11 (Test). 4) is a test iff VMVgVh: (g, h) ~ ~49~M ~ g = h. 

Notice that for a test q~ the definition of truth with respect to g given above 
boils down to (g, g) E [[~b]]. Also, we observe that for tests equivalence, s- 
equivalence and p-equivalence coincide. 

F A C T  4. If  ~b and to are tests, then: & -~, to <::> q5 -~ to<=> & %, to. 

The notion of a test is a semantic one. A partial syntactic characterization 
can be given as follows. In view of their semantic interpretation, atomic 
formulas, negations, implications, disjunctions, and universally quantified 
formulas are tests. Further,  it holds that a conjunction of tests is a test. 

We will refer to this syntactically delineated class of formulas as conditions: 

D E F I N I T I O N  12 (Conditions). 

1. If q5 is an atomic formula,  a negation, a disjunction, or an implication, 
then q5 is a condition; 
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2. If  05 and 0 are condit ions,  then [05 A ~] is a condit ion;  
3. Noth ing  is a condi t ion except  on the basis of  1 or  2. 

A n d  we note  the following fact: 

F A C T  5. If  05 is a condit ion,  then  05 is a test. 

With  the except ion of  contradict ions,  which have the emp ty  set as their  

in terpre ta t ion ,  and hence are tests,  the syntactic not ion of a condit ion 
character izes  the semant ic  not ion of a test: 

F A C T  6. 05 is a test  iff 05 is a condi t ion or a contradict ion.  

3.3. Scope and Binding 

A distinctive fea ture  of  D P L  is that  it allows for  existential  quantif iers to 
bind var iables  which are outside their  syntactic scope.  In this section we 

give a syntactic character iza t ion  of  when  an occurrence  of  a var iable  is 
bound  by an occurrence  of a quantifier.  This character iza t ion  will consist 

of  a s imul taneous  recursive definition of three  notions:  

• bp(05), the set of  binding pairs in 05; 

• aq(05), the set of  active quantifier occurrences in 05; 
• fv(05), the set of free occurrences o f  variables in 05. 

A binding pair  consist  of  a quantif ier  occur rence  and a var iable  occur rence  

such that  the first binds the second.  An  active quantif ier  occur rence  is one 
which has the potent ia l  to bind occurrences  of  the cor responding  variable  

fur ther  on. A free occurrence  of  a var iable  is one which is not  in any 
binding pair.  The  definition, which is a bit s loppy since we have ref ra ined 
f rom explicitly introducing a nota t ion  for  occurrences ,  is as follows: 

D E F I N I T I O N  13 (Scope and binding).  

1. b p ( R h  . . . . .  t,,) = 
a q ( R h  . . . . .  t,,) = 
fv (Rh  . . . . .  t,,) = {ti[ti a variable}. 

2. b p ( ~  05) = bp(05) 

aq(-q 05) = 
f v ( ~  05) = fv(05). 

3. bp(05 A 0) = bp(05) U bp(O) U {(3x, x)13x e aq(05) a x  E fv(O)} 

aq(05 A g,) = aq(O) U {3x ~ aq(05) I3x (£ aq(4,)} 
fv(05 A g,) = fv(05) U {x C fv(0)  13x ~ aq(05)}. 
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4. bp(4) v t)) = bp(4)) U bp(4,) 

aq(4) v g,) = 0 
fv(4) v +) = fv(4)) u fv(~).  

5. bp(4)--+ ~) = bp(4)) U bp(4,) U {(3x, x)13x E aq(4)) & x  E fv(0)} 

aq(4) --+ 4,) = 0 
fv(4) -+ 4J) = fv(4)) U {x ¢ fv(~)l 3x ¢ aq(4))}. 

6. bp(3x4)) = bp(4)) U {{3x, x)lx ~ fv(4))} 
aq(3x4)) = aq(4)) U {3x}, if 3x ¢ aq(4)), = aq(4)) otherwise 
fv(3x4)) = fv(4)) minus the occurences of x in 4). 

7. bp(Vx4)) = bp(4)) U {{Vx, x)lx ~ fv(~b)} 

aq(Vx4)) = 
fv(Vx4)) = fv(4)) minus the occurrences of x in 4). 

The 'test'-like character of atomic formulas, negations, disjunctions, impli- 
cations and universally quantified formulas, is reflected in the above defi- 
nition by the fact that for such formulas 4), aq(4)) = 0, i.e., no quantifier 
occurring in such a formula is able to bind occurrences of the correspond- 
ing variable further on. Notice that if we conjoin two formulas which 
each have an empty set of active quantifier occurrences, the resulting 
conjunction has no active occurrences either. This reminds us of the notion 
of a condition defined above. In fact, the requirement that aq(4))= 0 
characterizes those 4) which are conditions, and hence it also characterizes 
those 4) which are tests, with the exception of contradictions. 

The extra(-ordinary) binding power of the existential quantifier, the fact 
that it is externally dynamic, is reflected in Clause 6. The occurrence of 
3x in 3x4) is added to the active occurrences of ~b, unless, of course, there 
is already an active occurrence of that same quantifier in 4), in which case 
the latter remains the active occurrence. It is precisely in this respect that 
the binding properties of existential and universal quantification differ. 
Only existential quantifiers can have active occurrences, and for any for- 
mula, only one occurrence of a quantifier in that formula can be active. 

That disjunction is internally static is reflected in the first line of Clause 
4. The set of binding pairs of a disjunction is simply the union of the 
binding pairs of its disjuncts. So, no binding relations are possible across 
the disjuncts of a disjunction. In contrast to this, the binding pairs of a 
conjunction or an implication are not simply obtained by putting together 
the binding pairs of the constituent formulas; what is further added are 
pairs consisting of active occurrences of quantifiers in the first conjunct or 
in the antecedent,  together with free occurrences of the corresponding 
variables in the second conjunct or in the consequent. 

In addition to the three notions just introduced, we define a fourth one, 
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which will turn out  to be  convenient  when we c o m p a r e  D P L  and PL  in 

Sect ion 4.1. It  is the set of  scope pairs, sp(4,), of  a fo rmula  4': 

D E F I N I T I O N  14 (Scope pairs).  

1. sp (Rh  . . . . .  t,,) = ft. 

2. s p ( =  4') = sp(4,). 
3. sp(4, A q,) = sp(4,) U sp(~O). 
4. sp(4~ v g,) = sp(O) U sp(4').  
5. sp(4, -+ ~0) = sp(4,) tO sp(6) .  

6. sp(3x4,)  = sp(4,) tO {(3x, x>lx ~ fv(~)}. 
7. sp(VxqS) = sp(4')  U {(Vx,x)lx ~ fv(4,)}. 

We  note  two things about  this definition. First, if we replace the not ion 
fv(q~), the not ion of a free var iable  in D P L  as defined above ,  by the not ion 
fvpL(4,), the not ion of  a free var iable  in PL,  we end up with the not ion 

of binding in PL. Secondly,  concerning D P L  itself again,  the following 
fact can be p roved  by simple induction: 

F A C T  7. sp(4,) C_ bp(4,).  

So, it is sufficient but  not  necessary for a variable to be bound  by a 
quantif ier  that  it occurs in its scope.  Of  course,  in some cases, all var iables  
bound  by a quantif ier  are also inside its scope.  This holds for  example  for  

3x[Px /x Qx]: bp(3x[Px /x Qx]) = sp(3x[Px A Qx]). In Section 3.6, we 
will show that  for  any formula  q5 there  is a fo rmula  4,' which is equivalent  

in D P L  to qS, such that  bp(4, ' )  = sp(4, ' ) .  
For  some purposes  it is convenien t  to talk abou t  the free variables  of  a 

formula ,  ra ther  than abou t  their  occurrences .  We  will write the set of  free 

var iables  in 4, as 'FV(4,) ' :  

D E F I N I T I O N  15. x E FV(4,)  iff there  is an occurrence  of  x in fv(qS). 

For  similar reasons ,  we int roduce the not ion of  the set of  variables  x such 
that  there  is an active occurrence  of  3x in 4', and denote  it as ' A Q V ( 4 ' ) ' :  

D E F I N I T I O N  16. x E A Q V ( 4 ' )  iff 3x ¢ aq(4') .  

It  is useful to point  out  the following two facts, which bo th  can be p roven  
by s imple induct ion on the complexi ty  of  4' (by g = vv(e,) h we mean  that  
for all x E FV(4 ') :  g(x) = h(x)):  
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F AC T 8. If g =vv(~) h, then VM: g E \q$\M <=~ h E \¢h\M. 

F AC T 9. If 3M: (g, h} E [[q$~M & g(x) 4: h(x), then x e AQV(~b). 

Fact 8 says that if two assignments differ in that the one is in the satisfac- 
tion set of a formula of, whereas the other is not, they should also differ 
in the value they assign to at least one of the free variables of 4~. And 
Fact 9 says that if two assignments which assign a different value to a 
certain variable x form an input-output pair in the interpretation of a 
formula ~b, then there is an active occurrence of the quantifier 3x in ~b. 

3.4. Some Logical Facts 

Let us now turn to an exposition of some basic logical facts, which will 
illustrate various properties of DPL.  

We start with the interdefinablity of the logical constants. A simple 
calculation with the relevant clauses of Definition 2 shows that negation, 
conjunction and existential quantification can be used as our basic logical 
constants, the others being definable in terms of them in the usual way: 

4, -.-, e- = -~ [,:/, A ~ ,/,] 
d , v  ,/,--~ ~ [ ~  4, A ~ , / , ]  

Vxd, = -n = lx~  4> 

It should be noted, though, that contrary to what is the case in ordinary 
predicate logic, a different choice of basic constants is not possible. The 
following facts show that we cannot do with the universal quantifier and 
disjunction, nor with the universal quantifier and implication: 

3xd~ 4~ ~Vx-~ 4, 

The reason for this is, of course, that the expressions on the right are 
tests, which lack the dynamic binding properties of the expressions on the 
left. In the first and in the last case, the satisfaction sets, i.e., the truth 
conditions, of the expressions on the right and of those on the left indeed 

are the same: they are s-equivalent. This does not hold in the second case, 
because of the fact that disjunction is not only externally, but also intern- 
ally static. 

::[X¢~ = s  - q V X q  ¢~ 



62 J .  G R O E N E N D I J K  A N D  M .  S T O K H O F  

Furthermore,  we may note that, whereas disjunction can be defined in 
terms of implication, the reverse does not hold: 

4)~# ,~  ~4) v 0 

Disjunctions and implications are both tests, they are externally static. 
However,  an implication is internally dynamic, i.e., an existential quan- 
tifier in the antecedent can bind variables in the consequent. But no such 
binding relations are possible between the disjuncts of a disjunction, the 
latter being also internally static. This is also the reason why in the last 
case not even the truth conditions of the expressions on the right and on 
the left are the same: no s-equivalence obtains in this case: 

4 ) ~  ~ 4 ~ , 7 4 )  v 0 

In some special cases, some of these non-equivalences do hold. For exam- 
ple, if (and only if) 4)/x O is a test, it is equivalent with 7 [4) --~ -10]. 
And if 4) is a test, or more generally if no binding relations exist between 
4) and qJ, i.e., if AQV(4)) 71FV(0) : 0, then 4)--+ 0 is equivalent with 
7 4) v 0. Similarly, 3x4) is equivalent with ~ Vx -7 4) iff 3x4) is a test, which 
it is only if 4) is a contradiction. 

A relationship between the existential and the universal quantifier that 
does hold unconditionally is: 

7 :Ix4) -~ Vx -7 4) 

Of course, this follows from the fact that negation turns anything into a 
test. 

From the latter observation, we may conclude that the law of double 
negation will not hold unconditionally. Consider a formula 4) that is not 
a test. Negating 4) results in the test ~ 4), and a second negation, which 
gives -7-7 4), does not reverse this effect. And this seems correct, since a 
doubly negated sentence in general does not allow subsequent pronouns 
to refer back to elements in the scope of the negations. (But see Section 
5.1 for some further discussion.) Precisely in this respect, 4) and -7~4)  
may differ in meaning. However,  as far as their truth conditions are 
concerned, the two coincide, so 4) and -7 ~ 4) are s-equivalent. We can 
formulate the following restricted versions of the law of double negation: 

- 1 7  4) = 4) iff 4) is a test 

Hence,  double negation is not in general eliminable. The effect of applying 
double negation is that the meaning of a formula is restricted, so to speak, 
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to its truth conditions. It is useful to introduce an operator,  O, which 

performs this function: 

DEF I NI TI ON 17 (Closure). [[Q~b]] = {(g, h)lg = h & =lk: (h, k) E [[q)~}. 

One can look upon ~ as a kind of assertion or closure operator.  It can 
be used to close off a piece of discourse, blocking any further anaphoric 
reference, stating: this is how things stand. 

We notice that the following hold: 

~ b  -~ 7 -7 q5 ~- 4,  i f f  ~b i s  a test 

In terms of the operator  ~ we can also state the restricted versions of the 
interdefinability of the logical constants discussed above: 

O3xq~ -~ -TVx7  4~ 

Let  us now turn to some properties of conjunction. First of all, it can 
be noticed that conjunction is associative: 

[ 6 / ,  ~] A x-~ q~/, [~0 A x] 

Notice that associativity holds despite the increased binding power of the 
existential quantifier. This is so because if two conjuncts each contain an 
active occurrence of the same quantifier, it is the rightmost one which is 
active in the conjunction as a whole, the left one being 'de-activated'. 
Compare [3xPx A 4'] A BxQx with BxPx A [~b A 3xQx]. The last occur- 
rence of 3x is the active one. Hence,  it is this occurrence that binds the 
x in Hx, both in [ [ B x P x A O ] A 3 x Q x ] A H X ,  and in [BxPxA 
[~b A BxQx]] A Hx. The structure of the respective conjunctions is irrelev- 
ant in this respect. 

Conjunction is not unconditionally commutative, however, as the simple 
example of =IxPx A Qx and Qx A ::IxPx shows. In fact, the latter of these 
two formulas is a counterexample against idempotency of conjunction as 
well. 

4~A 04~ 0 A  4, 
,b4~ 6 A 4, 
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Of course, if both 4 and 4' are tests, commutativity holds, and if 4 is a 
test idempotency holds: 

o 4  A 04 '  = 04 '  A O 4  
O 6  --~ O4) A O4' 

That 4 is a test is not a necessary condition for idempotency of conjunction 
to hold. It is sufficient that active occurrences of a quantifier in 4 are 
unable to bind flee variables in 4: 

A Q V ( & ) a F V ( 4 ) : 0 0 & - ~ 4 A 4  

This condition isn't a necessary one either, e.g. Px/x 3xPx~- 
[Px A 3xPx] A [Px A 3xPx]. 

Similarly, 4 and 4' need not necessarily be both tests for commutativity 
of conjunction to hold. An example of a conjunction which does not 
consist of tests, but which nevertheless is commutative is BxPx A Qy, 
which has the same meaning as Qy A 3xPx. Commuting this conjunction 
does not interfere with its binding pattern. In general, if commuting the 
conjuncts does not change the binding pairs, nor the active occurrences 
of quantifiers in the conjunction, commutativity holds: 

AQV(4)  71FV(4') = 0 ] 

A Q V ( 4 ' ) r ~ F V ( 4 ) = 0  I ~ & A  4'--~4'/X4 

AQV(4)  71AQV(4') = 0 

In this case, too, the conditions are sufficient but not necessary. A case 
in point is the contradiction [Px/x --n Px]/x 3xQx. 

As is to be expected, disjunction, being both internally and externally 
static, is unconditionally idempotent, commutative and associative: 

4 - - 4 v 4  
4 v  4 ' = 4 ' v 4  
4 v  [4' v x]--- [4 v 4'] v x  

Idempotency and commutativity of disjunction reflect that there cannot 
be any anaphoric relations across disjuncts. (But see Sections 4.3 and 5.1 
for some discussion.) 

As for the classical de Morgan laws, DPL validates the following: 

o [ 4  A [4' v xll -~ [6 A 4'1 v [6 A x] 
4v [O4'A X]--~ [4 v 4'1A D V X ]  

The latter is a special instance of: 

AQ(4')I"IFV(x ) = 0 ~ 4 V  [ 4 ' A X ] = [ 4 V  ~] A [6VX] 
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Turning to implication, we may observe that the following form of 

contraposition goes through unconditionally: 

[-~ 4, ~ Ol = [-~ ~ 4,1 

But for the general case we need, again, the condition that no binding 
pairs are distorted: 

[04 ,  ~ o] - [-~ ~ ~ ~ 4,] 
AQV(4,) 71 FV(0)  = 0 ~ [4, ~ 4'] = [-7 0 --+ ~ 4,] 

The reason that we need a condition here,  is that quantifiers in the 
antecedent of an implication may bind variables in the consequent. Impli- 
cations, as we noted repeatedly, are internally dynamic. But no outside 
binding effects are permitted, they are externally static, and this is re- 
flected in the following two equivalences: 

[4 ' -+  0] -- 0 [4 , - - ,  01 

[4,--,  0] = [4, ~ ~ o ]  

The first equivalence is another  way of saying that an implication is a test, 
the second expresses that an implication turns its consequent into a test. 

A last fact concerning implication that we want to note, is the following: 

4 , - , , [ 4 , ~ x 1  - [4, A ~ , ] ~ x  

Finally, we notice some facts concerning the interplay of quantifiers and 
connectives: 

3x4, A 0-~ 3x[4, A ~] 
x ~ (FV(4,) U AQV(4,)) ~ 4, A 3xO-~ 3x[4, A ~] 

The first fact illustrates the dynamics of the existential quantifier: its 
binding power extends indefinitely to the right. This is what makes DPL 
a suitable instrument for the representation of antecendent-anaphor re- 
lations across sentence boundaries. The second fact states under which 
condition the scope of an existential quantifier may be extended to the 
left in a conjunction: under the usual condition that the left conjunct has 
no free occurrences of x, and further that the active occurrence of 3x is 
not 'de-activated' by an occurrence of that same quantifier in the first 
conjunct. 

The following equivalence is important for the analysis of 'donkey'-like 
cases of anaphora: 

3x4,--> O = Vx [  4, ~ 4,] 

Existential quantifiers in the antecedent of an implication may bind occur- 
rences of variables in the consequent,  and they have 'universal' force. 
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One final observation: 

3xq5 4~ 3y[y/x]ch 

Here,  [y/x]ch denotes, as usual, the result of replacing all free occurrences 
o f x  in q5 by y. This non-equivalence illustrates the fact that bound variables 
in DPL are 'more meaningful' expressions than in PL. Notice that 3x4~ 
and 3y[y/x]O are s-equivalent if no occurrence of y that is free in 3xq5 is 
bound in 3y[y/x] c~: 

y ¢ FV(40 ~ 3x~b -~s 3y[y/x]d) 

The above observations mark some of the ways in which the dynamic 
semantics of DPL differs from the ordinary, static interpretation of PL. 
A more detailed comparison can be found in Section 4.1. 

3.5. Entailment 

In standard logic, 4~ entails 0 iff whenever 4~ is true, 0 is true as well. 
Since we have defined a notion of truth in DPL,  we can also define an 
analogue of this notion of entailment for DPL.  We will refer to it as 
s-entailment, and write it as '~s': 

DEFINITION 18 (s-entailment). 4~ ~s ~ iff VMVg: if ~b is true with respect 
to g in M, then 0 is true with respect to g in M. 

In other words, 4~ s-entails 6 iff VM: \qS\M C_\O\~. Obviously, s-equiva- 
lence as it was defined above, is mutual s-entailment. 

Unlike the notion of entailment in PL, in DPL the notion of s-entailment 
does not coincide with that of meaning inclusion, which is denoted by '4 ' :  

DEFINITION 19 (Meaning inclusion). ~b ~< 0 iff VM: [[~b~M C_ ~0]M. 

In DPL,  meaning is a richer notion than in PL, where interpretation and 
satisfaction coincide. Meaning inclusion implies s-entailment, but not the 
other way around: 

FACT 10. qS~ 0 ~ q S ~ , 0 .  

The notion of equivalence -~ defined in Section 3.2 is nothing but mutual 
meaning inclusion. 

In an important sense, the notion of s-entailment is not a truly dynamic 
notion of entailment. One way to illustrate this, is to point out the fact 
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that the notion of s-entailment does not correspond in the usual way to 
implication. For  example, although it holds that G 3 xPx -+  Px, we have 
3xPx ~s Px. Whereas in an implication an existential quantifier in the 
antecedent can bind variables in the consequent,  the notion of s-entailment 
does not account for similar binding relations between premiss and con- 
clusion. However,  in natural language, such relations do occur. From A 
man came in wearing a hat, we may conclude So, he wore a hat, where 
the pronoun in the conclusion is anaphorically linked to the indefinite 
term in the premiss. As we have just seen, if we want to account for this, 

the notion of s-entailment is not the one we are after. For similar reasons, 
meaning inclusion is not what we are looking for either. It is too strict: 
3xPx 4~ Px. And it is also not strict enough. For <~ is reflexive, but, as is 
argued below, dynamic entailment is not: Px A 3xQx  does not entail 
Px A 3xQx.  

Hence,  we have to find another,  an inherently dynamic notion of entail- 
ment. Taking up our processing metaphor once more, which means look- 
ing at sentences as a kind of programs, a reasonably intuitive notion is 
the following. We say that 05 entails 0 if every successful execution of 05 
guarantees a succesful execution of ~. Or, to put it slightly differently, 05 
entails 0 iff every assignment that is a possible output of 05 is a possible 
input for 0. This is captured in the following definition of dynamic entail- 
ment: 

DEF INI TI ON 20 (Entailment).  

05 ~ t) iff VMVgVh: (g, h) ~ [[05]]M ~ 3k: (h, k) ~ I[~M. 

Using the notions of satisfaction set and production set, we can write this 
more economically as: 

05 ~ 0 iff VM:/05/M C_ \ 0\  M 

As requested, the notion of dynamic entailment corresponds in the 
usual way to the interpretation of implication: 

FAC T 11 (Deduction theorem).  05 ~ 0 iff ~ 05 -+ 0. 

Entailment is related to s-entailment in the following way: 

FAC T 12. 05 G t) iff ~ 05 ~ t). 

More generally, entailment and s-entailment coincide if no binding 
relations exist between premiss and conclusion: 



68 J .  G R O E N E N D I J K  A N D  M ,  S T O K H O F  

FACT 13. If AQV(05) n FV(0)  = 0, then: 05 ~s 0¢::~ 05 ~ 0- 

We note further that mutual entailment of 05 and ~ does not mean that 
05 and ~ are equivalent. For example, 3xPx and Px do entail each other,  
but they are not equivalent. The same pair of formulas illustrates that 
entailment does not imply meaning inclusion. And the reverse does not 
hold in general either. For example, the meaning of Qx/x 3xPx includes 
the meaning of Qx/~ 3xPx, but the latter does not entail the former. 
Meaning inclusion does imply entailment if there are no binding relations 

between premiss and conclusion: 

FACT 14. If AQV(05) n FV(0)  = 0, then: 05 ~ 0 ~  05 ~ ¢). 

In the proof  of this fact, the two Facts 8 and 9 stated in Section 3.3 play 
a central role. Suppose AQV(05) n FV(0)  = ~ and 05 ~< 0. Let  h ~/05/m, 
that is 3g: (g, h) E ~05~M. Since, if (g, h) E [[05~M, then h[AQV(05)]g (Fact 
9), and AQV(05) n FV(0)  = 0, it holds for all x E FV(~) that g(x) = h(x). 
Since 05~< 0, it also holds that (g, h ) E  ~O~M, and hence that g ~  \~\M. 
From g(x) = h(x) for all x ~ FV(¢)), and g E \0\M, we may conclude on 

the basis of Fact 8 that h E \¢)\ M as well. 
Precisely because the notion of entailment is truly dynamic in the sense 

that it allows active quantiflers in a premiss to bind variables in the 
conclusion, it lacks some properties which more orthodox notions, such as 
s-entailment, do have, notably the properties of reflexivity and transitivity. 

We already encountered a typical counterexample to reflexivity of dy- 
namic entailment in the formula Px/x 3xQx, which does not entail itself. 
The reason is that in the occurrence of this formula as a conclusion, the 
variable x in the first conjunct gets bound by the quantifier in the occur- 
rence of the formula as a premiss, whereas in the occurrence of the 
formula as a premiss it is free. The following restricted fact about reflexiv- 
ity, however, does hold as an immediate consequence of Fact 14 and the 

reflexivity of 4 :  

FACT 15 (Reflexivity). If AQV(05) n FV(~b) = 0, then 05 ~ 05. 

The condition on reflexivity given here is a sufficient, but not a necessary 
one. For example, the formulas Px/x 3xPx, and Px A 3xPx/x Qx, both 
do entail themselves. Conditions similar to the one on reflexivity can be 
laid upon other facts about entailment known from ordinary predicate 
logic, in order  to accommodate them to DPL. An example is the following: 

If AQV(t))  n FV(~0) = ~, then 05/x ~0 ~ ¢) 
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We mention in passing that if one would use D P L  for practical purposes,  

one would certainly choose active quantifiers and free variables in such a 

way that these t roublesome cases are avoided. 
Not only reflexivity, but transitivity, too, may fail when free occurrences 

of variables in a conclusion, are bound by a premiss. If we arrive at a 

conclusion X in several steps 01 • • • ~. from an initial premiss 4~, we cannot 
simply omit  these intermediary steps, and conclude immediately from ~b 
to X. Roughly speaking, we first have to make sure that there are no 

antecedent-anaphor  relations between one of the intermediate steps and 
the conclusion which are not due to a similar relation between premiss 
and conclusion. For  example,  although -1 ~ 3xPx ~ 3xPx, and 3xPx ~ Px, 
we notice that -7 -n 3xPx ~ Px. 

The cases which present  problems for transitivity can be characterized 
as follows. Suppose q5 ~ ~ and ~O ~ X. If we want to conclude from this that 

q5 ~ X, then problems may arise if x E FV(x)  and x E AQV(O).  Consider 
again -7 ~ 3xPx, 3xPx, and Px. Clearly, the first entails the second, and 

the second entails the third, without the first entailing the third. On the 
other hand, consider 3xPx, 3xPx, and Px, or 3xPx A Qx, 3xPx, and Px. 
These are two cases where nothing goes wrong. So, not all cases where X 
contains a free occurrence of x, and ~ contains an active ocurrence of 3x 
are to be excluded. Evidently, what also matters is what 4~ 'says' about x, 
in the dynamic sense of what constraint it puts on whatever  free occur- 

rences of x that are still to come. Roughly speaking, what q5 says about 
variables which occur freely in X and which are bound by ~, should be at 
least as strong as what ~ says about them. So, what is needed is a stronger 

version of the notion of entai lment that covers the condition that the 
premiss puts at least as strong a condition on certain variables as the 

conclusion does. This notion can be defined as follows, where by 

'h =x~ . . . . .  g '  we mean 'h(x~) = g(xl) & . . .  & h(xn) = g(x~)': 

D E F I N I T I O N  21 (xi •. • xn-Entailment).  

q5 ~xl . . . . .  ~ iff VMVg: g E/ch/M ~ 3h: (g, h) ~ ~O~M 
& h =xl . . . . .  g 

Notice that (~Xl  . . . .  ~t implies that 4 ~  0, and 

(~ ~Xl . . . . . .  I/1 collapses into q5 ~ 0. 
Now we are ready to state the following fact: 

that if n = 0 ,  then 

F A C T  16 (Transitivity). ~b )AQV(O)NFV(x) ~J • ~t ) X ~ (} ~ X. 

The proof  of this fact runs as follows. Suppose g E/~)/M. Then 
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3h: {g, h) ~ [[O~M, and for all x E AQV(x)  rq FV(~),  it holds that g(x) = 
h(x). Since 0 k X, it holds that h ~ \X\M. For any variable x E FV(x) ,  if 

x ~ AQV(40 then g(x) = h(x) by assumption; but if x ~ AQV(O), then 
also g(x) = h(x), since (g, h} E I[0I]M (use Fact 9). Hence,  we have g(x) = 
h(x) for all variables x E FV(x) ,  and hence g ~ \X\M (Fact 8). 

The above shows that there are some complications inherent in the 
notion of dynamic entailment. These do pay off, however. We can trans- 
late 'natural language' reasonings in which pronouns are introduced in 
intermediary steps, directly into DPL. Consider the following, admittedly 
stylized, example and its translation into DPL: 

1. It is not the case that nobody walks and talks ( ~  3x[Px a Qx]). 
2. So, somebody walks and talks (3x[Px A Qx]). 
3. So, he walks (Px). 
4. So, somebody walks (3xPx). 
5. So, it is not the case that nobody walks (7  -q 3xPx). 

The interesting bit is the step from 2 to 3. The pronoun he occurring in 
3 is bound by somebody in 2. So, although 1 implies 2, and 2 implies 3, 
1 does not imply 3, precisely because 1 cannot, and should not, bind the 
pronoun in 3. But in the transition from 2 via 3 to 4, 3 can be omitted. 
And the same holds for all other intermediate steps. So, in the end, 5 is 
a consequence of 1. 

Up to now, we have only discussed entailment with respect to a single 
premiss. It makes sense to generalize the definition of entailment given 
above in the following way: 

DEFINITION 22 (Entailment, general form). 

05 t , . . . ,  05,, P Oif f  V M V h V g , . . . g , , :  <g,,g2} ~ ~051~m & . . .  
& (g,,, h} e ~05,,~M ~ 3k: <h, k} e ~O~M 

Notice that it is not a set, but a sequence of formulas, a discourse, that 
can be said to entail a formula. In view of the above, this is not surprising. 
What holds, of course, is: 

05, . . . . .  05n P Oiff 05t A . . .  a 05,, ~ Oiff ~ [05, A . . .  A 05,,1 --> ~ 

Since the order of the conjuncts matters for the interpretation of a conjunc- 
tion, so will the order  of the premisses matter  for entailment. For example, 
although 3xPx, 3xQx ~ Qx, we have 9xQx, 3xPx ~ Qx. Further,  we note 
that in a certain sense dynamic entailment is not monotonic. Whereas it 
holds unconditionally that if 05 ~ ~p, then X, 05 ~ ~, we may not always 
conclude from 05 ~ ~0 that 05, X ~ ~. The reason for this being, again, that 



D Y N A M I C  P R E D I C A T E  L O G I C  71 

X may interfere with bindings between ~b and ~, for example, it does hold 
that 3xPx ~ Px, but we have 3xPx, 3xQx ¢: Px. 

Again, for practical purposes these complications can be evaded by a 
suitable choice of active quantifiers and free variables. For example, in 
adding a premiss which contains an active quantifier, we better choose 
one which does not already occur actively in one of the other premisses. 

Such practical considerations are particularly important in designing a 
proof  system. In cooperation with Roel de Vrijer, a sound and complete 
system of natural deduction for DPL is being developed, which we hope 
to present in a separate paper. 

4. COMPARISONS 

In Section 4.1, we compare DPL with ordinary predicate logic. In Section 
4.2, the relation between DPL  and D R T  is discussed. And in Section 4.3, 
we turn to a comparison of DPL with quantificational dynamic logic. 

4.1. DPL and PL 

In discussing some basic logical facts concerning DPL,  we have noticed a 
number of differences between DPL  and PL, all arising from the essen- 
tially richer notion of binding of the former. In this section we show that 
this is indeed exactly the point at which the two systems differ. First we 
show that for any formula q5 there is a formula ~b' which is DPL-equivalent 
to ~b, in which all variables bound by a quantifier are brought under its 
scope, i.e., for which it holds that bp(~b') = sp0b' ). Then we show that 
for any formula 4~ such that bp(qS) = sp(qS), the truth conditions of ~b in 
DPL and in PL coincide. If we put these two facts together,  it follows 
that for any formula q5 there is a formula ~b' which is equivalent to it, and 
for which it holds that its truth conditions in DPL and PL are the same. 

We already noticed above that the satisfaction set of a DPL-formula,  
the set of assigments with respect to which it is true, is the same type of 
semantic object as the PL-interpretation of a formula. Because PL and 
DPL have the same syntax, we may speak of the PL- and the DPL- 
interpretation of one and the same formula. 

We first define the semantics of PL in the same kind of format we used 
for the semantics of DPL. PL-models are the same as DPL-models,  as 
are assignments and the interpretation of terms. The definition of the 
interpretation function [[ ]]~t L C G is as follows. (We drop subscripts when- 
ever this does not lead to confusion, and we continue to use '[[ ]]' without 
a superscript to denote interpretation in DPL.)  
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DEFINITION 23 (PL-semantics). 

1 .  [ [ R h  . . . tn~ PL = {gl (~ t l ] ]g  . . . [tn]~g) E F(R)}. 
2. [[tt = t2]] eL = {gl l[h]]g = [ [ t2l]g}. 

3. [[-7 4,11PL = {gl g ~ [¢~PL}. 
4. ~¢ v +~PL = {gig ~ [¢~PL vg  E [[O]]PL}. 
5. [[4~ ~ ~#]]PL = {gl g E [[~b]] PL ~ g E ~#]]PL}. 
6. ~b A +~PL = { g i g  ~ [¢~PL & g E [[o~PL}. 

7. [[qx¢]] PL = {glqk: k[x]g a k e ~b~eL}. 

8. ~VX(~ PL = {gl Vk: k[xlg  ~ k C ~q~PL}. 

The set of assignments which is the interpretation of a formula, consists 
of those assignments which satisfy the formula: we call ¢ true with respect 
to g in M iff g E ~¢~PL. 

The satisfaction set \~b\ of a formula in D P L ,  and its interpretation 
{[0~ PL in PL are both sets of assignments. But the satisfaction set of a 
formula need not be the same as its PL-interpretation. For example, the 
satisfaction set of 3 x P x / x  Qx  is not identical to its PL-interpretation. 
However,  for the formula 9 x [ P x / x  Qx], which is equivalent to 3xPx /~  Qx  

in DPL,  it does hold that its satisfaction set and its PL-interpretation are 
the same. The difference between the two is that in the latter all occur- 
rences of x which are bound by the existential quantifier are also brought 
in its scope. Similarly, the satisfaction set and the PL-interpretation of 
3 x P x  ~ Qx  are different, whereas the satisfaction set and the PL-interpre- 
tation of Vx[Px  ~ Qx], which is equivalent in DPL to 9 x P x - +  Qx,  are 
the same. Again, the difference between the two is that in the latter case 
all bound variables are brought under the scope of a quantifier. 

In fact, for every formula ¢ there is a formula ¢ '  which is equivalent 
to ~b in DPL such that in rh' all variables which are bound by a quantifier, 
occur in its scope. We define a recipe b which provides us with such a 
variant for every formula. We will call b~b the normal  binding fo rm of ¢: 

DEFINITION 24 (DPL normal binding form). 

1. b R h  . . . tn = Rtt  . . . t,. 

2. b (h  = t.) = (tl = tn). 
3. b - 7 ~ ' = T b  O. 

4. b[01 v 02] = [bO, v b~2]. 
5. b 3 x ~ =  3 x b ~ .  

6.  b V x O  = V x b ~ .  

7. b [ + t  A ~2] = 
(a) b[xt  A [X2 A $2]] i f  qJl = [X~ A X2]. 
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(b) [ 3 x b [ x  A ~2]] if O~ = 3xx. 
(C) [ b ~ l  A bff.t2] otherwise. 

8. b [t~l - +  ~2] = 

(a)  b[x, + [)(2 -+  ~/2]] i f  0 l  ~-- [,)(i A X2]. 
(b) [Vxb[x--+ ~.t2] ] if e, = 3xx. 
(c) [bg'l --+ b~92] otherwise. 

The interesting bit in this definition are Clauses 7 and 8. Clause 7(a) 
rebrackets complex conjunctions in such a way that all closing brackets 
are moved to the right end side. For example, [[Px A Ox] A Rx] is turned 
into [Px A [Ox A Rx]], and [[[Px A Ox] A Rx] A Sx] is first turned into 
[[Px A Qx] A [Rx A Sx]], and then into [Px A [Qx A [Rx A Sx]]]. Clause 
7(b) moves existential quantifiers which are inside the first conjunct of a 
conjunction, outside that conjunction. For example, 

b[[3xPx A 3yQy] A Rxy] = b[3xPx A [3yQy A Rxy]] = 

3xb[Px A [ 3yQy A Rxy]] = 3x[bPx A b[ 3yQy A Rxy]] = 
3x[Px A 3y[Qy A Rxy]]. 

The workings of 7(a) and 7(b) make sure that after repeated application, 
one will always end up with a conjunction of which the first conjunct is 
neither a conjunction, nor an existentially quantified formula, i.e., it will 
be a condition. That is when Clause 7(c) applies. Clause 8 defines an 
analogous procedure for implications. Notice that all clauses leave the 
length of the formula unchanged. A proof that the recipe will always 
terminate can easily be given. 

Now, we prove the following fact: 

FACT 17. For all formulas th: O = bch. 

The proof is by induction on the length of 4~. For the cases which concern 
the Clauses 1-6, 7(c) and 8(c), the proof is trivial. For the Clauses 7(a) 
and (b), and 8(a) and (b), it suffices to point out the following four DPL- 
equivalences: 

[,~,, ~] A x =  4, A [ ~ A x ]  
3xcb/, ~, = 3x[ch/, 0] 
[O A ~] - - ' x -~  ~--"  [ ~ - - ' x ]  
3 x ~  --, ~ = Vx[4, --, ~] 

Next, we show that when a formula is brought in normal binding form, 
all variables bound by a quantifier are in its scope: 

FACT 18. bp(bqS) = sp(bch). 

The proof is by induction on the length of qS. 
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Clauses 1-6 are simple. For 7(a) we only need to remark that 
bp([x1/x X2]/x ~2) = bp(x1/x [X2 A ~2]), as can be seen from Definition 
13. Similar observations can be made for 7(b), 8(a) and 8(b). 

The crucial clauses are 7(c) and 8(c). Consider Case 7(c); i.e. 
q~ = I/t 1 A ~t 2 and b~b = b O l  A b 0 2 .  We have bp(bOl A b 0 2  ) = 

bp(bO0 U bp(b~2) U {(3x, x)] 3x ¢ aq(bOx) & x ¢ fv(bO2)}. Since in this 
case b0~ can not be a conjunction or an existentially quantified formula, 
it holds that aq(b~0,) = 0. This means that in this case bp(b01 A bO2) = 
bp(bO 0 U bp(b~02). By induction, bp(bO0 = sp(bg, l) and bp(bO2) = 
sp(bO2). Hence,  bp(bO~/x bO2) = sp(bOl) U sp(bO2). And according to 
the definition of sp, the latter is the same as sp(b~0t A btP2). For 8(c) a 
similar reasoning can be given. 

Now we show that for any formula in which all variables which are 
bound by a quantifier are inside its scope, it holds that its satisfaction set 
and its PL-interpretation coincide: 

FACT 19. If bp(4~) = sp(qS), then VM: \qS\M = ~qS~ t'. 

The proof proceeds by induction on the length of ~b. 
Obviously, it holds for atomic formulas. And for all but the internally 

dynamic connectives -~ and A, the result follows by a straightforward 
induction. For example: let q5 = 3x4,, and suppose b p ( 3 x O ) =  sp(3xO). 
This is the case iff bp(O) = sp(O). Now, 

\ 3 x 0 \  = {g[ 3k: k[x]g & 3h: (k, h) ~ ~0]~} = 

{gl 3k: k[xlg & k~  \ ~\ } 

By induction the latter is the same as: 

{gl 3k: k[xlg & k E [[~PL} 

which in turn equals: 

~3x01] PL 

The case of ~ is slightly more complex. Let  q5 = ~0-*X. Suppose 
bp(~--+X) = sp(~-+X).  In other words, bp(~) = sp(~), bp(A ~) = sp(x), 
and if 3x E aq(qJ), then x ¢ fv(x).  We also know that: 

\ 0 ~ x \  = {g] Vh: (g, h) ~ ~4,~ ~ h E \X\}  

It follows by Facts 8 and 9 from Section 3.3 that this is equal to: 

{g] Vh: (g, h) e ][0~ ---~g e \X\} 

For, by Fact 9, g and h differ only in variables which have a correspond- 
ing active occurrence in 0. By our assumption that bp(O--+ X) = sp(O ~ X), 
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these variables do not occur freely in ~v, whence it follows by Fact 8 that 

if h C \X\, then g E \X\. 
The above, in its turn, is equal to: 

{gl g E \4,\ ---,g E \ x \ }  

Applying induction, we see that this is the same as: 

{gl g E ~0~ eL ~ g E ~,¥~PL} 

which equals: 

~4, - ,  x~ PL 

We end the proof by noting that for the remaining case of 4) = O/~ X, the 
proof proceeds in a similar fashion. 

From Facts 18 and 19 it now follows that: 

FACT 20. VM: \b4)\ = ~b4)~ 1"I-. 

And putting the latter fact together with Fact 17 we get: 

FACT 21. For any formula 4) there is a formula 4)' such that VM: ~4)~4 = 
~4)']]M, and \4)'\M = [[4),]]PL. 

Moreover,  we also have that: 

F AC T 22. For any formula 4) there is a formula 4)' such that 
VM: ]4)~} = ~4)'~}, and ~4),~L = \4)'\M. 

It is easy to see that this holds. In PL any formula 05 is equivalent to a 
formula # 4) in which all occurrrences of A, --+ and 3x are eliminated in 
favour of v ,  7 and V. Clearly, b p ( # 4 ) ) =  sp(#4)). Hence,  by Fact 19, 
\ =~4)\~I = [=~:4)~PM L, for all M. 

Finally, we note the following: 

FACT 23. If bp(4)) = sp(4)), then PPL 4) iff kDPL 4). 

This follows directly from Fact 19. 
Summing up: 

FACT 24. For any formula 4): 

1. There  is a formula 4)' such that )DPL 4) iff ~DPL 4)' iff  ~PL 4)" 
2. There is a formula 4)" such that ~PL 4) iff ~PL 4)" iff ~DPL 4)"- 
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4.2. D P L  a n d  D R T  

In this section we compare the language of DPL with what corresponds to 
it in Kamp's DRT,  viz., the language in which the discourse representation 
structures (DRS's) are formulated. DPL is intended to be 'empiricallly 
equivalent' to DRT:  it was designed to deal with roughly the same range 
of natural language facts. The difference between the two approaches is 
primarily of a methodological nature and compositionality is the watershed 
between the two. Therefore,  besides giving a formal comparison of the 
logical languages of the two systems in the present section, we shall also 
discuss the matter  of compositionality in somewhat more detail in Section 
5.2. 

The DRS-language and the language of DPL differ in several respects. 
First of all, in the DRS-language, a syntactic distinction is made between 
c o n d i t i o n s  and DRS's. It is by means of the latter, that natural language 
sentences and discourses are represented; conditions are elements out 
of which DRS's  are constructed. In other words, conditions occur as 
subexpressions of DRS's. Corresponding to this syntactic distinction, there 
is a semantic one. Conditions are interpreted in terms of their truth 
conditions, DRS's are interpreted in terms of their v e r i f y i n g  e m b e d d i n g s .  

A second difference between the DRS-language and the language of 
DPL is that the former contains negation, implication and disjunction, but 
not conjunction and no quantifiers. The basis of the DRS-language is 
formed by a set of atomic conditions. Further,  there is a single, non- 
iterative rule which has DRS's as output: DRS's are formed by prefixing 
a number of variables to a number of conditions. This rule is to compen- 
sate DRT's  lack of conjunction and quantifiers. The prefixed variables 
function as DRT's  quantification mechanism, and the conditions to which 
they are prefixed can be viewed as the conjunction of those conditions. 
These conditions can be either atomic or complex. Complex conditions 
are in turn built from DRS's by means of the connectives. Negation turns 
a DRS into a condition, implication and disjunction take two DRS's and 
deliver a condition. 

Choosing a format that resembles as closely as possible that of DPL,  
the syntax and semantics of DRT can be defined as follows. The non- 
logical vocabulary consists of: n-place predicates, individual constants, 
and variables. Logical constants are negation 7 ,  disjunction v ,  implication 
---~, and identity =. The syntactic rules are as follows: 

DEFINITION 25 (DRT-syntax). 

1. If h . . .  tn are individual constants or variables, R is an n-place 
predicate, then R h  • • • tn is a condition. 



D Y N A M I C  P R E D I C A T E  L O G I C  77 

2. If tl and t2 are individual constants or variables, then tl = t2 is a 
condition. 

3. If 05 is a DRS,  then -n 05 is a condition. 
4. If 05 and 0 are DRS's,  then [05 v 0] is a condition. 
5. If 05 and 0 are DRS's,  then [05 ~ 0] is a condition. 
6. If 051... 05~ (n ~>0) are conditions, and X l . . . X k  are variables 

(k/> 0), then [x1 . . . xk ] [05~ . . .  05,,] is a DRS. 
7. Nothing is a condition or a DRS except on the basis of 1-6. 

Models for the DRS-language are the same as those for DPL,  as are 
assignments and the interpretation of terms. Parallel to the syntactic dis- 
tinction between conditions and DRS's,  the semantics defines two notions 
of interpretation. First of all, we define an interpretation function 
[[ ~ t  Rs C_ G x G, for DRS's.  Here,  '(g, h) ~ [[05]]DRS, corresponds to the 

DRT-not ion 'h is a verifying embedding of 05 with respect to g'. Since 
DRS's  are built up from conditions, we also need to define a notion of 

]]Cone ,g ~05~ Cond, interpretation of conditions: ~ ~ C_ G, where E corresponds 
to the DRT-not ion '05 is true with respect to g'. So, DRS's  receive the 
same type of interpretation as DPL-formulas.  In one respect our definition 
of these notions differs from the one given in DRT:  we prefer assignments 
to be total functions rather than partial ones. This is no matter  of principle. 
Just as is usually done in DRT,  we could rephrase the semantics of DPL 
in terms of partial assignments. 

The simultaneous recursive definition of the notions [[ ~C/ond and 
] ]~s  runs as follows (where we drop subscripts again, whenever this 

does not lead to confusion): 

DEF I NI TI ON 26 (DRT-semantics). 

l .  [ R h  . . . tn~ C°nd = {gl @ l ~ g .  . . ~ t n ~ g )  ~ F(R)}. 
2. ~t~ = t2]] c°"° = {gl ~tt~g = [t2~g}. 
3. [[--'1 (]~Cond = {gi 7 3h: <g, h) ~ ~o~DRS}. 
4. ~05 v t/t~ C°nd = {gl 3h: <g, h) e [[6] DRS v (g, h) e [[[]/~DRS}. 

5. ~05--+ O]] c°nd = {gl Vh: (g, h) ¢ ~05~DRS ~ 3k: (h, k) ~ ~o~DRS}. 

6. [[[Xl. . . X k ] [ 0 5 1 . . .  05n]~ DRS = 

{ ( g ,  h)[ h [ x l  . . . x k ] g  • h ~ ~051~ C°nd ~ . . .  ~ h ~ ~05n~C°nd}. 

In order to make clear in what sense the set of variables introduced in 
Clause 6 functions as DRT's  quantification mechanism, we first define the 
notion of a DRS being true with respect to an assignment in a model: 

DEF INI TI ON 27 (Truth in DRT) .  A DRS 05 is t rue  wi th  respec t  to g in 
M iff 3h: (g, h) E [[&]]DRS. 
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So, the notion of truth for DRS's is the same as the notion of truth in 
DPL. And from Definition 27 we see that the variable set in a DRS 
behaves like existential quantification over these variables. A simple DRS 
like [x][Px, Qx] has the same truth conditions as the formula 3x[Px A Qx] 
in PL and DPL. Moreover,  the interpretations of this DRS and of the 
DPL-formula are also the same. To give another example, the DRS 
[x,y][Px, Qy, Rxy] has the same meaning as the DPL-formula 
3x3y[Px A Qy A Rxy]. 

Notice that DRS's can also be built from conditions by means of empty 
DRS-quantification. For  example, [ ][Px] is a DRS, and its interpretation 
according to Definition 26, is {(g, h)l h[ ]g & h(x)~ F(P)}. Now, h[ ]g 
means the same as h = g, so the 'atomic DRS'  [ ][Px] and the atomic 
DPL-formula Px have the same interpretation. In fact, this procedure can 
be applied to turn any DRT-condit ion into a DRS, giving it structurally 
the same interpretation as the corresponding DPL-condition. 

The interpretation of a DRS,  being the same kind of object as the 
interpretation of formulas in DPL,  is of a dynamic nature. The dynamics 
of DRS's  is put to use in the interpretation of implications (and nowhere 
else, by the way). For example, the DRT-condit ion [x] [Px] ~ [ ][Qx] has 
the same truth conditions as the DPL-formula 3xPx--~ Qx. This, of 
course, is the key to DRT's  successful treatment of donkey-sentences. 

Having made these observations, we now turn to the definition of a 
translation from the DRS-language into that of DPL. We translate both 
DRS's and DRT-conditions into DPL-formulas. Blurring the syntactic and 
semantic distinction between DRS's  and conditions in this way is justified, 
since DRT-conditions will translate into DPL-conditions, and the latter 
are tests, i.e., their meaning and truth conditions in DPL are one-to-one 
related. The translation t05 of a DRS or a condition 05 is defined as follows: 

DEFINITION 28 (DRT-to-DPL translation). 

1. t R h . . . t , = R h . . . t , .  
2. t ( t l  = t.) = (h = t.). 
3. t~@=~tO. 

4. t[Ot v ~21 = [t@~ v t02]. 

5. t[@l --> @21 -- [t@~ ~ ]'@21. 
6. t [ x l . . ,  x~][@, . . . 0~] ---- 3 X l . . .  3xk[t@, A . . .  A t@.]. 

We prove that our translation is meaning-preserving in the following 
sense: 
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F A C T  25 

1. If  05 is a condit ion,  then V M :  ~05]]CM°nd ~--- \t05\M. 

2. If  05 is a D R S ,  then VM: ~05]]~RS = ~t05~M. 

This fact is p roven  by induct ion on the complexi ty  of  05. For  the Clauses 

1-5 of  Definit ion 25, which build DRT-condi t ions ,  the p roof  is trivial. So, 

what  remains to be shown is that:  

~ [x~ . . .  xk][0~ • • • 0,,]]] Das = [ [ 3 x l . . .  3xk[ t01 A . . .  At0,,]]] 

By definition it holds that:  

~ [ X l  " " " X k ]  [ 0 I  • " ' O n ] ] ]  D R S  = 

{<g, h>] h[x l . . .  Xk]g & h e ~01~ c°nd & . . .  & h ~ ~0n~ c°nd} 

By induction:  [[0s]] c ° n a =  \ t 0~ \ ,  for 1 ~< i ~< n. So, we may  cont inue our  

equat ion  as follows: 

= {(g, h) 1 h[x~...xk]g&h E \ t 0 ~ \ & . .  • & h  E \¢0, , \}  

Next ,  we note  two auxiliary facts: 

F A C T  26. If  05 and 0 are DRT-cond i t ions ,  then t05 A tO is a condi t ion in 
D P L  as well. 

F r o m  Definit ion 28 it is easy to see that  if 05 and 0 are DRT-condi t ions ,  

then t05 and t 0  are condit ions in D P L  as well. By Definit ion 12 it then 

follows that  t05 A tO is also a DPL-condi t ion .  

F A C T  27. If  q5 and 0 are DPL-condi t ions ,  then \& A 0 \ = \ 0 5 \  ['7 \ I / A .  

This can be proven  by a simple calculation. 

Now we re turn to our  p roof  o f  Fact  25. On  the basis of  our  auxiliary 

facts, we arrive at the following cont inuat ion of  our  equat ion:  

= {(g, h)l h[xl...xk]g & h ~ \tO~ A . . .  A t~0,,\} 

Since t~ A . . .  A t~ is a DPL-cond i t ion ,  it holds that 

h ¢ \t0~ A . . . A ?0n\  iff (h, h) ~ lit01 A . . . A tO,,]]. This implies that we 
can cont inue as follows: 

= {(g, h>l 3k k[x~.. .  Xk]g & (k, h) e [It01 A . . .  A t0,,]} 
= [[3x~... 3x~[t~ A . . .  A t0~]]l 

By which the p roo f  of  Fact  25 is completed .  

Before  turning to the less urgent ,  but  more  difficult p rob lem of  translat- 
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ind DPL-formulas into DRS's, we return, by way of a short intermezzo, 
to two of the examples discussed in Section 2.1, and compare, once again, 
the corresponding DPL-formulas and DRS's. By t D R T  we mean the 
translation of the DRT-representation in DPL. 

(1) A man walks in the park. He whistles. 
(la) 3x[man(x) A walk_in_the_park(x) A whistle(x)] P L / t D R T  
(lb) 3x[man(x) A walk_in_the_park(x)] A whistle(x) DPL 
(lc) [x][man(x),walk_in_the_park(x), whistle(x)] DRT 
(3) Every farmer who owns a donkey beats it 
(3a) VxVy[[farmer(x) A donkey(y) A own(x, y)] --~ beat(x, y)] PL 
(3b) Vx[[farmer(x) A 3y[donkey(y) A own(x,y)]] ~ b e a t ( x , y ) ]  DPL 
(3c) [ ][[x, y] [farmer(x), donkey(y),  own(x, y)] --+ [ ][beat (x, y)]] DRT 
(3d) 3x3y[farmer(x) A donkey(y) A own(x, y)] --+ beat(x, y) ?DRT 

Consider the first example. If our diagnosis of the problem that such a 
sequence poses, viz., that the real problem is to provide a compositional 
translation of such sequences of sentences into a logical representation 
language, is correct, then the DRT-representation has as little to offer as 
the PL-translation. The two component sentences cannot be retrieved 
from (lc), neither can they be isolated from (la) as subformulas. The 
DPL-representation differs precisely at this point. 

As for the second example, it is not possible to retrieve the component 
parts of the sentence from either the PL- or the DRT-representation, nor 
from the ?DRT-translation. But in the DPL-formula, we do find an open 
formula which corresponds to the complex noun farmer who owns a 
donkey, viz., farmer(x) A 3y[donkey(y) A own(x, y)]. But no such sub- 
expression is to be found in the DRT-representation or in the correspond- 
ing tDRT-formula.  

In fact, each of the two examples can be used to make a point in favour 
of DPL. The preferable DPL-translation of the first example is available 
precisely because DPL has dynamic conjunction, whereas such a concept 
is lacking in DRT. As for the second example, here DPL fares better 
because, unlike DRT-quantification, DPL-quantification is iterative. It is 
precisely these two concepts of DPL which enable us to give a composi- 
tional treatment of the cases at hand. In fact, if both conjunction of DRS's 
and iterative quantification were added to DRT, it would simply collapse 
into DPL. 

This is a rather surprising result, since one of the trademarks of theories 
such as those of Kamp and Heim is the non-quantificational analysis of 
indefinite terms, whereas it is characteristic of DPL that it does allow us 
to treat such terms as existentially quantified expressions. 
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A host of arguments have been presented against a quantificational 
analysis of indefinites, see in particular in Heim (1982). However,  these 
arguments now appear to be directed, not against a quantificational analy- 
sis as such, but only against the traditional quantificational analysis, which 
is static. The dynamic DPL-approach is not affected by these. 

We do not discuss the various arguments here, with one exception. 
This argument concerns what Heim calls the 'chameleontic'  nature of the 
quantificational force of indefinites. What follows is in essence, but not in 
all details, taken from Helm (1982). 

Consider the following variants of our example (2): 

(9) If a farmer owns a donkey, he always/usually/sometimes/never 
beats it 

These variants of the donkey-example (2) have readings which can be 
paraphrased as in (10): 

(10) In al l /most/some/no cases in which a farmer owns a donkey, 
he beats it 

Examples such as those in (9) are taken to support the view that what 
appears to be the quantificational force of an indefinite term, is in fact 
either due to a different expression, a so-called 'adverb of quantification', 
as in (9), or is implicit in the construction, as for example in the original 
donkey-sentence (2). Following Lewis (1975), it is assumed that the sen- 
tences in (9) are to be analyzed along the following lines. The main 
operator  is the adverb of quantification, which takes two arguments, the 
antecedent and the consequent. The indefinite terms are treated as free 
variables, which are unselectively bound by the main operator,  which 
determines the quantificational force. The antecedent serves as a restric- 
tion on the unselective quantification. For the original donkey-sentence, 
which lacks an overt adverb of quantification, i t  is assumed that the 
construction itself acts as a universal adverb of quantification. 

At  first sight, this argument seems not to be restricted to the traditional, 
static quantificational analysis, but seems to apply to any quantificational 
approach which associates a specific quantificational force with indefinite 
terms. However ,  in view of our observations concerning the relationship 
between DPL and DRT,  this can not really be correct. In fact, it is not 
difficult to incorporate the 'adverbs-of-quantification' analysis of sentences 
such as (9) in DPL,  thus showing its compatibility with a quantificational 
treatment of indefinites. 

Recall that in the interpretation clause of implication, there is universal 
quantification over the output assignments of the antecedent: 
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~d9 ~ t~ = { (g, h) l h = g & for all k: (h, k) ~ ~05~, 3j: (k, j) ~ ~ }  

What we can do is simply generalize this to other quantificational forces, 
and index the implication accordingly: 

[{05 ---~o ~0~ = {(g, h) l h = g & for Qk: (h, k) ~ ~05~, 3j: (k, j) C ~t~} 

This has the required effects. Consider the following example: 

(11) If a farmer owns a donkey, he never beats it 

If we translate this using ~no,  the result is: 

3x[farmer(x) A 3y[donkey(y)  A own(x, y)]] ~no beat(x, y) 

This denotes the following set of pairs of assignments: 

{(g, g)l ~ 3h: h[x, y]g & h(x) E F(farmer) 
& h(y) E F(donkey) & (h(x), h(y)) 
F(own) & (h(x), h(y)) E F(beat)} 

Notice that this analysis works precisely because indefinite terms are ana- 
lyzed as dynamically existentially quantified expressions. For this has the 
effect that the quantification in the general scheme is restricted to the 
variables which correspond to indefinite terms. 

We do not intend this as a final analysis of adverbs of quantification, 
since, for one thing, such an analysis has to be higher-order and inten- 
sional, and DPL is only first-order and extensional. But we do take the 
above to show that an 'adverbs-of-quantification' analysis is perfectly com- 
patible with a quantificational analysis of indefinite terms, provided this 
is a dynamic one. 

After this intermezzo, we return to the formal comparison of DPL and 
DRT.  As we already remarked above, the formulation of a translation 
from the DPL-language to the DRS-language, is more difficult than the 
other way around. In fact, no strict interpretation-preserving translation 
is possible, though one which preserves truth conditions is. We point out 
the main features of such a translation, written as '§', without, however, 
going into details. 

Notice that the fact that DRT distinguishes between conditions and 
DRS's,  presents no problem. Defining a translation from DPL-formulas 
into DRS's is sufficient, for as we saw above, any DRT-condit ion can 
easily be turned into a DRS by means of empty DRT-quantification. 

Now, there are three complications. The first concerns universal quanti- 
fication, which is lacking in DRT.  We can either use the definition of Vx05 
in terms of ~ 3 x ~  05, or turn §Vx05 directly into the condition [x][ ] --+ §05. 
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The remaining two complications, not surprisingly, stem from the two 
essential differences between D R T  and DPL which we noticed above. 
Because D R T  lacks a notion of DRS-conjunction, we cannot composi- 
tionally translate a DPL-conjunction. Something like §[~bA 0] = 
[ ][§qS, §to] would work only if both conjuncts are DPL-conditions, which, 

of course, they need not be. 
Similarly, no compositional translation of existentially quantified for- 

mulas is possible either. Again, §3xq5 = [x]§q5 works only if q5 is a DPL- 
condition. Suppose that ~b in its turn is 3yRxy. Then the resulting transl- 
ation would be [x][y]Rxy. But this is not a well-formed DRS, since [y]Rxy 
is not a DRT-condition. 

To get things to work, we first need to define a special format for DPL- 
formulas which enables us to translate them in a non-compositional, global 
manner into DRS's. In order to arrive at the required format, any DPL- 
formula q5 should be turned into a formula q~', such that any subformula 

of ~b' is of the form 3xl . . . 3x,,to (n ~> 0), where tO is a DPL-condition. 
It is possible to give an algorithm that has the required effect, but it is 

not strictly meaning-preserving. The following two examples may serve to 
illustrate this. Consider the formula Px A 3xQx. In order to give it the 
right format, the existential quantifier in the second conjunct has to be 
moved outside of the conjunction. But this can't  be done, since there is 
a free occurrence of x in the first conjunct. So, we have to resort to an 
alphabetic variant: 3y[PxA Qy]. As a second example, consider 
3xPx/x 3xQx. In this case, too, both quantifiers have to be moved outside 
the conjunction, and then again, we need an alphabetic variant: 
3x3y[Px A Qy]. The use of alphabetic variants implies that the algorithm 
is not meaning preserving, for in DPL  such variants have different mean- 
ings: 3xq5 4~ 3y[y/x]ch. 

These features of DPL-to-DRT-translat ion illustrate once more,  we 
think, what exactly makes DPL  a more suitable instrument for semantic 
analysis. Its dynamic notion of conjunction, and its dynamic and iterative 
concept of existential quantification allow us to deal with various phenom- 
ena in a simple, intuitive and compositional manner. 

4.3. DPL and Quantificational Dynamic Logic 

Although there are important resemblances between DPL and certain 
systems of dynamic logic as they are discussed in Harel  (1984), there are 
also major differences. To begin with, there is an important difference in 
perspective and over-all aims. Dynamic logic is meant to be used in the 
formalization of reasoning about computer  programs, about the effects of 
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their execution, their soundness and correctness, and so on. Typically, 
the formulas of a system of dynamic logic are interpreted as assertions 
about programs. And the semantic interpretation of these formulas is an 
ordinary static interpretation. However,  in order to be able to talk about 
programs in a logical language, one also needs expressions that refer to 
these programs. And that is where dynamic interpretation comes in. The 
expressions which are the logical stand-in's for programs, do receive a 
dynamic interpretation. However,  they only appear as sub-expressions in 
the formulas that make up the logical system, they are not themselves 
formulas of the logic. 

We note in passing, that in this respect we find precisely the opposite 
situation in DRT.  There as well, we have a distinction between statically 
interpreted expressions, DRT's  conditions, and dynamically interpreted 
ones, the DRS's. But in DRT it is the dynamic expressions that play first 
fiddle, and the static conditions only occur as subexpressions in these. 

In DPL,  it is the formulas themselves that receive a dynamic interpret- 
ation, the kind of interpretation that programs receive in ordinary dynamic 
logic. DPL is a system in which certain kinds of 'programs' can be ex- 
pressed, but we cannot formulate assertions about these programs in DPL 
itself. Since it is a logical language which is designed to represent meanings 
of natural language sentences, one could say that it embodies the view 
that the meaning of a sentence is a program, an instruction to the interpre- 
ter. So, one could view DPL as a kind of 'programming language', rather 
than as a language to reason about such programs. Of course, one can 
reason about it in a metalanguage. And, in fact, one could use ordinary 
dynamic logic as a means to formalize reasoning about DPL. 

Of course, this difference in what the systems are meant to be able to 
do, is reflected in various aspects of their organization. We illustrate 
this by presenting the syntax and semantics of a particular system of 
quantificational dynamic logic, referred to as 'QDL' ,  which proves to be 
intimately related to DPL. 

Dynamic logic is related to modal logic. The models contain a set S of 
possible (execution) states. The formulas are interpreted as sets of states, 
the set of states in which a formula is true. Programs are conceived of as 
transformations of possible states, i.e., as relations between possible 
states. In this respect, the interpretation of a program is like an accessi- 
bility relation in modal logic. Each program or corresponds to an accessi- 
bility relation [[0r~M C_ S × S. A pair (s, s') is an element of ~'~M if when 
executed in s, 0r may lead to s ' .  (If the program is deterministic, [~-~M 
would be a (partial) function.) 

In view of their association with accessibility relations, we can build 
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moda l  ope ra to r s  (~-) and [Tr] a round  a p r o g r a m  7r. Like their  coun te rpa r t s  

in moda l  logic, these ope ra to r s  can be pref ixed to a fo rmula  05 to fo rm 

ano the r  fo rmula ,  (~-)05 or [~-]05. A fo rmula  (~-)05 is t rue  in a state s iff 
execut ion  of  ~r in s m a y  lead to a state s '  such tha t  05 is t rue  in s ' .  In o the r  

words ,  (7r)05 expresses  that  it is possible  that  05 is t rue  af ter  7r has been  
executed.  Similarly,  [Tr] 05 is t rue  in s iff all execut ions  of  7r in s will lead 

to a state s '  in which 05 is t rue.  So, [Tr] 05 means  that  05 must  be  t rue af ter  7r 
has been  executed.  [trio5 is equivalent  to -7 (~r)~ 05, where  ~ is in te rpre ted  
as ord inary  static negat ion.  

In sys tems of quant if icat ional  dynamic  logic, the set of  possible  states 
is not  just a set of  pr imi t ive  objects ,  but  is identified with the set of  

ass ignment  funct ions G. The  in te rpre ta t ion  of a fo rmula  05 is [[05]]M C_ G. 
A n d  the in te rpre ta t ion  of  a p r o g r a m  rr is [[rr~a4 C_ G x G. 

We  now presen t  a par t icular  vers ion of Q D L  that  has precisely the 
fea tures  we need to c o m p a r e  it with DPL.  We  start  out  f rom the language 

of P L  and add the fol lowing features .  Basic p rog rams  are r a n d o m  assign- 
men t s  to var iables ,  wri t ten as 'x :=  r a n d o m ' .  (This is a fea ture  not  p resen t  

in s tandard  Q D L ,  where  o rd inary  determinis t ic  ass ignments  'x := a '  figure 
in the language. )  Fur the r ,  we add an o p e r a t o r  ' ? ' ,  which turns a fo rmula  

05 into a p r o g r a m  ?05. Such a p r o g r a m  is called a ' tes t ' ,  and its in terpret -  
at ion is indeed  like tha t  of  a test  in D P L ,  it is the set  of  identi ty pairs 

(g, g) such that  05 is t rue  with respec t  to g. Next ,  we add the ope ra to r  ' ; '  
to fo rm sequences  of  p rograms .  (Ord ina ry  determinis t ic  ass ignments  can 
be def ined in te rms  of  these not ions  as: x :=  r andom;  ?x = a.)  Finally,  we 
add the ' m o d a l  ope ra to r s '  discussed above.  So, Q D L  has the following 
syntax: 

D E F I N I T I O N  29 (Syntax of  Q D L ) .  

1. T is a formula .  
2. If  t l . . .  t,  are individual  constants  or  var iables ,  R is an n-place 

pred ica te ,  then  R t l . . .  tn is a formula .  
3. If  h and t2 are individual  constants  or  var iables ,  then  t~ = t2 is a 

formula .  

4. If  05 is a fo rmula ,  then  -7 05 is a formula .  
5. If  & and 0 are formulas ,  then  [&-+  ~], [&/x 0] and [& v 0] are 

formulas .  
6. If  05 is a fo rmula ,  then  3x05 is a formula .  
7. If  05 is a fo rmula ,  then  Vx05 is a formula .  

8. If  05 is a fo rmula ,  then  ?05 is a p rog ram.  
9. I f  x is a var iable ,  then  x := r a n d o m  is a p rog ram.  
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10. If 7h and 'rr 2 are programs, then [rq; ~r2] is a program. 
11. If 7r is a program and q5 is a formula, then 0r)05 is a formula. 
12. If ~r is a program and 05 is a formula, then [rr]05 is a formula. 
13. Nothing is a formula or a program except on the basis of 1-12 

Models for QDL are like those for (D)PL. Like in DRT,  we simulta- 
neously define two interpretation functions, one for formulas: 
[[ ]~DL C_ G; and one for programs: ~ ~ o g  C G x G as follows (as usual, 

we suppress subscripts whenever this does not give rise to confusion): 

DEFINITION 30 (Semantics of QDL).  

1. [[TI ° DE=  G. 

2. ~ R t l . . ,  tn~ QDL = {gl ( ~ f l ~ g . ' '  ~tn~g) • F ( R ) } .  

3. [[tl = t2~ QDL = {gl ~tl~g = ~t2~g}. 
4. [[~ 05~ODL = {gig q~ [[05~ODL}. 
5. ~05 ~ @~QDL = {g]g • I[05~QDL ~ g • [[0~ODL}, and similarly for A, v .  
6. [[3xO~ °De = {g[ 3k: k[x]g & k • I[&~ODL}. 

7. [[VX05~ °DL = {gl Vk: k[x]g~  k e [&~ODL}. 
8. [[?05~Prog = {(g, h) I h = g a h • ~&~ODL}. 

9. IX := random~ er°g = {(g, h)l h[x]g}. 
10. b n ;  ~-2~ Pr°g -- {(g, h)l ?k:  (g, k) • ~,B-I~ Pr°g ~ (k, h) • ~3T2~Pr°g}. 

11. I(~-)05~ ODE = {gl 3h: (g, h> • [[Tr]] Pr°g & h • ~05~QDL}, 

12. [[[7r]05~ QDL = {g] Vh: (g, h) • ~T~ er°g ~ h • I05~QDL}, 

First, we note that the language defined above can be economized rather 
drastically. Of course, the interdefinability of the connectives and quanti- 
tiers in PL carries over to QDL.  But, moreover,  as appears from the 
following two equivalences, we can conclude that all that is characteristic 
of PL can be eliminated altogether: 

0 5 ~ 0  = [70510 
3x05 -~ (x := random)05 

So, in terms of negation, the test-operator, random assignments and one 
of the two modal operators, all other logical constants can be defined. 

As we noted above, DPL-formulas can be conceived of as a kind of 
programs. The following definition presents a translation '~>' of DPL- 
formulas into QDL-programs: 

DEFINITION 31 (DPL-to-QDL translation). 

1 .  E > R t a  . . . t n  = ? R t l  . . . t n .  

2. {>~05= ?-~(~>05)T. 
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3. > [ 4  A 4,] = [>4 ;  >~] .  
4. > [ 4  v ~] = ? [ ( > 4 ) T  v (E>@T]. 
5. > [4 - - *  ~] = ? [D4I (>@T.  
6. D 3 x  4 = Ix :=  random; > 4 ] .  
7. > V x 6  = ?[x := random](I>@T. 

The last but one of these clauses illustrates that in DPL we need not 
introduce the existential quantifier syncategorematically: we could take 
3x itself to be a formula of DPL,  with the same interpretation as a random 
assignment statement, and we could write 3x/x 6 instead of 3x6.  

The following fact can be proven by induction on the complexity of 05: 

FAC T 28. VM: [[4]]M = I l P " ' & l l P r ° g  h t v  %']1M • 

Unlike in the case of DRT,  we can equally easily define a translation in 
the opposite direction. Like in our translation from D RT to DPL,  we 
don' t  pay attention to the distinction between formulas and programs in 
QDL. No problems can arise from this, since QDL-formulas will be 
translated into DPL-conditions. We make only one small addition to DPL: 
we add T as a basic formula, and interpret it as the identity relation on 
G. We denote the translation function by ~<5': 

DEF INI TI ON 32 (QDL- to-DPL translation). 
1. <~T = T. 

2 .  < ~ R t ,  . . . & = R t z  . . . t n .  

3. q ~ 4 = ~ < 4 .  
4. q [ 4 - +  ~] = [q4- -+  <~4,], and similarly for v and A. 
5. q 3 X 4  = O3X<14. 

6. < V x 4  = V x q  4. 

7. q ? 4  = q 4 .  
8. <~x := random = 3xT. 

9. <[~ri; ~'2] = [<~vr~ A qvr~ I. 
10. < < ~ ) 4  = o [ < , ~  A <4,1. 
11. <~[rr]4= [q r r -+< l~ ] .  

By simultaneous induction on the complexity of the programs rr and 
formulas 4 of QDL it can be shown that the translation is meaning- 
preserving in the following sense: 

F AC T 29. 

1. VM: [[4~ Q D L  = \ < ~ 4 \ M  , 

2. VM: ~ 4 ~ ;  °g = ~<4~M. 
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The redundancy of QDL is reflected illuminatingly in the translation. Most 
DPL-operators can be found twice on the right hand side. In some cases, 
they occur once in a dynamic and once in a static variant, the latter being 
obtained by prefixing the closure operator. Notice that since PL forms a 
fragment of QDL, the translation presented above is also a translation of 
PL into DPL. 

We end this section by discussing two standard features of quantifi- 
cational dynamic logics that we have left out solar. The one is program 
disjunction, the other program repetition. We also discuss briefly their 
possible use in natural language semantics. 

The syntax and semantics of program-disjunction are defined as follows: 

DEFINITION 33 (Program disjunction). 

1. If Irl and ~r2 are programs, then [Iri U 7r2] is a program. 
2. I[TT1 U IT2]] pr°g = ~['B'I]] Pr°g U I[7T2]] Pr°g, 

Of course, the same definition could be used to introduce a second notion 
of disjunction U besides v in DPL. Unlike the latter, U is a dynamic 
notion, but it differs in an interesting way from dynamic implication 
and conjunction. Whereas implication is only internally dynamic, and 
conjunction is both internally and externally dynamic, U is only externally 
dynamic. An existential quantifier 3x in the first disjunct cannot bind free 
occurrences of x in the second disjunct (nor vice versa), but an existential 
quantifier in either disjunct can bind variables in a further conjunct. In 
the formula [3xPx U 3xQx] A Hx both occurrences of 3x in the first 
conjunct bind the occurrence of x in the second conjunct. In fact, the 
formula in question is equivalent to [ 3xPx A Hx] U [ 3xQx A Hx]. More 
generally the following holds: 

[ uo] A x =  
[ d ,u  e] = A 

Adding this kind of disjunction to our dynamic repertoire would enable us 
to treat the anaphoric links in examples like (12) and (13) in a completely 
straightforward way: 

(12) A professor or an assistant professor will attend the meeting 
of the university board. He will report to the faculty 

(13) If a professor or an assistant professor attends the meeting of 
the university board, then he reports to the faculty 

However, as we shall see in the next section, adding this new kind of 
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dynamic disjunction still leaves certain dynamic features of natural lan- 
guage disjunction unexplained. 

We now turn to program repetition. This concept is important in the 
semantic analysis of program constructions like ' w h i l e . . .  d o . . . '  and 're- 

p e a t . . ,  u n t i l . . . ' .  The syntax and semantics of program repetition is de- 
fined as follows: 

DEF INI TI ON 34 (Program repetition). 

1. If ~- is a program, then 7r* is a program. 
2. ~w*~ er°g = {{g, h)[ 3n3go,  gL . . . . .  gn: go = g & gn = h & 

Vi: 1 <~ i <~ n: {gi-1, gi) E []-7/"]]Pr°gl tt IIM I. 

According to this definition, a pair <g, h) is in the interpretation of ~-* iff 
h can be reached from g by a repeating ~- a finite but non-deterministically 
determined number of times. 

At first sight, this kind of concept seems of no use in natural language 
semantics. However,  consider the following example (due to Schubert and 
Pelletier (1989)): 

(14) If I 've got a quarter in my pocket,  I'll put it in the parking 
meter  

Notice first of all, that unlike a DRT/DPL-analysis  would have it, one 
who utters (14), probably does not intend to spend all the quarters in his 
pocket on the parking meter. Now, notice that a procedural meaning of 
(14) could informally be paraphrased as "Repeat  getting coins out of your 
pocket until it is a quarter; then put it in the parking meter" .  So maybe 
after all, adding repetition to DPL could add to its use as a tool in natural 
language semantics. 

As one of the referees pointed out, the Schubert and Pelletier analysis 
can be dealt with in DPL in a more straightforward way, too. It would 
suffice to define another notion of implication as follows: 

~l---"> ~ : d e f ~ l  (D V I l i A  ~]] 

See also Chierchia (1988, 1990), where this conservative notion of impli- 
cation is argued for. 

5. PROSPECT AND RETROSPECT 

5.1. Prob lems  and Prospects  

As we have pointed out in the introduction of this paper, we are interested 
in developing a compositional, non-representational semantics of dis- 
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course, one which will enable us to marry the compositional framework of 
Montague grammar to a dynamic outlook on meaning such as can be 
found in DR T and its kin. The development of DPL is only a first step 
in achieving this over-all aim. At the empirical level, DPL matches DRT,  
and from a methodological point of view, it is in line with MG. At least 
at the following two points, DPL needs to be extended. First of all, like 
DRT,  DPL is restricted to the resources of an extensional first-order 
system, whereas MG essentially makes use of intensional higher order 
logic. And secondly, DPL shares several empirical characteristics with 
D R T  which have been disputed in the literature. 

As for the first point, DPL offers as compositional a treatment of 
natural language expressions as a first-order system permits; nothing more,  
nothing less. However,  to match MG, and more in particular to be able 
to cope with compositionality below the sentential level in the way familiar 
from MG, we do need more. In fact, we need a higher-order, intensional 
language with A-abstraction, or something else that is able to do what that 
does. In Groenendijk and Stokhof (1990) one way to go about is pre- 
sented, which uses a version of dynamic intensional logic (DIL) as it was 
developed in Janssen (1986) with the aim of providing a Montague-style 
semantics for programming languages. The resulting system of 'dynamic 
Montague grammar'  (DMG) is able to cope with the phenomena DPL 
deals with in a completely compositional fashion - below, on, and beyond 
the sentential level. 

The second issue we want to touch upon here concerns certain empirical 
predictions that DPL shares with DRT.  

As we remarked several times in the above, only conjunction and the 
existential quantifier are treated in a fully dynamic fashion. They are 
both internally and externally dynamic. All other logical constants are 
externally static. In this respect, DPL is like DRT.  In our informal intro- 
duction to DPL in Section 2, we motivated the interpretation clauses for 
the various logical constants by pointing out that they behave differently 
with regard to possible anaphoric relations. (Cf. examples (4)-(8).)  Thus 
it was argued, for example, that conjunction and implication should be 
internally dynamic, because both allow an antecedent in their first argu- 
ment to bind an anaphor in their second argument. However,  it was 
concluded that only conjunction is also externally dynamic, since it also 
passes on bindings to sentences to come, whereas implication, in view of 
the fact that it lacks this feature, should be treated as externally static. 
The interpretation of the universal quantifier, negation, and disjunction 
was motivated in a similar fashion. 

Several authors have provided examples which seem to indicate that 
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the predictions that DRT and DPL make here, are not borne out by the 
facts. (See e.g. Roberts (1987, 1989), Kadmon (1987).) Consider the 
following examples (which are (variants of) examples that can be found 
in the literature): 

(15) If a client turns up, you treat him politely. You offer him a 
cup of coffee and ask him to wait 

(16) Every player chooses a pawn. He puts it on square one. 
(17) It is not true that John doesn't own a car. It is red, and it is 

parked in front of his house 
(18) Either there is no bathroom here, or it is in a funny place. In 

any case, it is not on the first floor 

Different conclusions may be drawn from these observations, some of 
which are compatible with the way in which the logical constants are 
interpreted in DRT and DPL. However, one might also take these ex- 
amples to show that, at least in certain contexts, the universal quantifier, 
implication, disjunction, and negation are both internally and externally 
dynamic. Without wanting to commit ourselves to the latter position, we 
want to explore its consequences a little here. 

As for the first of the examples, it can then be observed that the second 
sentence is interpreted as an additional conjunct of the consequent of the 
implication in the first sentence, as the following paraphrase of (15) shows: 

(19) If a client turns up, you treat him politely, you offer him a cup 
of coffee, and ask him to wait 

So, what we need is an interpretation of implication which will make (20) 
equivalent to (21): 

(20) [3x[client(x) A turn_up(x)] --+ treat_politely(y, x)] A offer_ 
coffee(y, x) A ask_to_wait(y, x) 

(21) 3x[client(x) A turn_up(x)] ~ [treat_politely(y, x) A offer_ 
coffee(y, x) A ask to_wai t (y ,  x)] 

More generally, an externally dynamic interpretation of implication will 
make [cb --~ ~] A X equivalent with q5 --~ [4~ A X]. 

AS for the second example, similar observations can be made. It can 
be paraphrased as (22), which indicates that an externally dynamic treat- 
ment of universal quantification will make (23) equivalent with (24): 

(22) Every player chooses a pawn, and (he) puts it on square one 
(23) Vx [player (x) --~ 3y[pawn(y) A choose(x, y)]] A put_on_ 

square one(x, y) 
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(24) Vx [player (x) ~ 3y[pawn(y) A choose(x, y) A put_on_square  
one(x, y)]] 

So, on this approach, Vxq5 A 4, turns out to be equivalent with Vx[~b A 4,]. 
And if this is combined with a dynamic interpretation of implication, 
Vx[~b -~ 4,] A X will be equivalent with Vx[q5 --+ [4, A/" ] ] .  

In a similar fashion, the third example may be taken to indicate that a 
dynamic version of negation is needed for which the law of double ne- 
gation holds. 

The last example indicates that disjunction, too, can sometimes be 
interpreted dynamically. This interpretation should make [q5 v 4,] A X 
equivalent with ~b v [4' A 1"]. Notice that the dynamic interpretation of 
disjunction that is at stake here, differs from the one discussed in Section 
4.3. The latter, as we have seen, is essentially internally static, and only 
externally dynamic, whereas the present notion is both internally and 
externally dynamic. Also, their external dynamic behaviour is different: 
[q5 U 4,] A X is equivalent with [4) A X] U [4, A 1']. 

These observations characterize one way of dealing with such examples 
as (15)-(18). We end our discussion of them with three remarks. First of 
all, saying what the desired effect of the dynamic interpretations of the 
logical constants involved are, is, of course, not the same as actually giving 
the interpretations themselves. And secondly, the availability of suitable 
dynamic interpretations would leave unanswered the question why it is 
that the logical constants involved act dynamically in certain contexts, but 
not in others. Finally, in view of the latter fact, one would not want to 
postulate two independent interpretations. Rather, the static interpret- 
ation should be available from the dynamic one by a general operation of 
closure. 

The first and the last issue are discussed at length in Groenendijk and 
Stokhof (1990). There it is shown that using the richer framework of 
DMG, the required dynamic interpretations can indeed be obtained, and 
in such a fashion that the static interpretations are the closures of the 
dynamic ones. As for the second point, this seems to be more an empirical 
than a formal question, to which DMG as such does not provide an 
answer. 

From this, we conclude that the kind of dynamic approach to natural 
language meaning that is advocated in this paper, is not restricted to the 
particular form it has taken here, i.e., that of the DPL-system, but is 
sufficiently rich to allow for alternative analyses and extensions (see, e.g., 
Chierchia (1988, 1990), Dekker (1990), van den Berg (1990)). 
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5.2. Meaning and Compositionality 

The primary motivation for the DPL-undertaking was that we were inter- 
ested in the development of a compositional and non-representational 
theory of meaning for discourses. Compositionality is the corner-stone of 
all semantic theories in the logical tradition. As a consequence, it has 
also been of prime importance in those approaches to natural language 
semantics which use tools developed in the logical paradigm. However, 
compositionality has been challenged as a property of natural language 
semantics. Especially when dealing with the meaning of discourses people 
have felt, and sometimes argued, that a compositional approach fails. 

In the context of natural language semantics, we interpret composi- 
tionality as primarily a methodological principle, which gets empirical, 
computational, or philosophical import only when additional, and inde- 
pendently motivated constraints are put on the syntactic or the semantic 
part of the grammar that one uses. In other words, it being a methodolog- 
ical starting point it is always possible to satisfy compositionality by simply 
adjusting the syntactic and/or semantic tools one uses, unless that is, the 
latter are constrained on independent grounds. In view of this interpret- 
ation of compositionality, our interest in the possibility of a compositional 
semantics of discourse is also primarily of a methodological nature. Faced 
with non-compositional theories that give an account of interesting phe- 
nomena in the semantics of natural language discourses, we wanted to 
investigate the properties of a theory that is compositional and accounts 
for the same facts. We knew in advance that such a theory should exist, 
what we wanted to know is what it would look like: it might have been 
that being compositional was the only thing that speaks in favour of such 
a theory, in which case there would have been good reasons to abandon 
it. 

As we already remarked in the introduction, beside these methodolog- 
ical considerations, there may also be practical reasons to be interested 
in trying to keep to compositionality. One such reason can be found in 
computational requirements on the semantics of discourses, or texts. For 
example, in a translation program one would like to be able to interpret 
a text in an on-line manner, i.e., incrementally, processing and interpret- 
ing each basic unit as it comes along, in the context created by the 
interpretation of the text solar. Although certainly not the only way to 
meet this requirement, compositionality is a most intuitive way to do so. 
As such, on-line interpretation does not preclude that in the interpretation 
of a unit of text, other things than the interpretation of the text sofar play 
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a role. But it does require that at any point in the processing of a text we 
are able to say what the interpretation thus far is. In other words, it does 
rule out approaches (such as DRT) in which the interpretation of a text 
is a two-stage process, in which we first build a representation, which only 
afterwards, i.e., at the end of the text, or a certain segment of it, mediates 
interpretation of the text as such. So, from the viewpoint of a compu- 
tational semantics, there is ample reason to try and keep to compositional- 
ity. 

Yet another reason is provided by certain philosophical considerations. 
These concern the fact that non-compositional semantic theories usually 
postulate a level of semantic representation, or 'logical form', in between 
syntactic form and meaning proper, which is supposed to be a necessary 
ingredient of a descriptively and explanatorily adequate theory. Consider 
the following two sequences of sentences (the examples are due to Partee, 
they are cited from Heim (1982)): 

(25) I dropped ten marbles and found all of them, except for one. 
It is probably under the sofa. 

(26) I dropped ten marbles and found only nine of them. It is 
probably under the sofa. 

There is a marked contrast between these two sequences of sentences. 
The first one is all right, and the pronoun it refers to the missing marble. 
The second sequence, however, is out. Even though it may be perfectly 
clear to us that the speaker is trying to refer to the missing marble with 
the pronoun it, evidently, this is not the way to do this. Like most authors, 
we start from the assumption that co-reference and anaphora are, by and 
large semantic phenomena. ('By and large' in view of the fact that some- 
times certain syntactic features are involved in pronoun resolution as well. 
A case in point is syntactic gender in languages like German and Dutch.) 
Therefore, we may take the following for granted: the contrast between 
(23) and (24) marks a difference between the respective opening sen- 
tences, and this difference is one of meaning, in the broad, intuitive sense 
of the word. But what does this difference consist in? For notice that the 
first sentences of (23) and (24) do characterize the same situation. There 
is no difference in their truth conditions, therefore it seems that they 
are semantically equivalent. Indeed, they are equivalent in any standard 
semantic system that explicates meaning solely in terms of truth (or more 
generally, denotation) conditions. And we speculate that it is for this 
reason that many semanticists have taken the view that the difference in 
question is one of (logical) form, of (semantic) representation, rather than 
one of content. 
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For various reasons, we think that one should not adopt this point of 
view too hastily. For, it means that one has to postulate an intermediate 
level of representation in between natural language and its interpretation. 
True,  most semantic frameworks interpret natural language via translation 
into a logical language, but the general methodological strategy here has 
always been to make sure that the translation procedure is compositional, 
and hence, in view of the compositional nature of the interpretation of the 
logical language, in principle dispensable. The logical translation serves 
practical purposes only, in principle it can be discarded. But notice that 
the level of representation that is assumed if one views the difference 
between (23) and (24) as one of form, is not of this (optional) nature. 
The two sentences involved will be mapped onto different logical forms, 
or semantic representations, which in their turn will receive an equivalent 
interpretation. Accounting for the difference between (23) and (24) in this 
way, makes the existence of this level of representation imperative, rather 
than useful. It would be a necessary go-between natural language and its 
meaning. So it seems that, perhaps without being aware of it, many have 
put a constraint on the semantics: meaning is truth (denotation) con- 
ditions. Then,  indeed, compositionality becomes a contentfull, rather than 
a methodological principle, and one which is falsified: the facts force the 
existence of a level of semantic representation on us. 

There are several reasons why we think that the move to a semantic 
theory which assumes such an independent level of semantic representa- 
tion, distinct both from syntactic structure and from meaning proper,  
should be looked upon with reserve. First of all, there is the familiar, 
almost commonplace reason of theoretical parsimony. Levels of represen- 
tation, too, should not be multiplied beyond necessity, and although this 
is perhaps not too exciting a comment to make, we feel that from a 
methodological point of view it is still a sound one. Of course, its relevance 
in the present context does presuppose that we are not really forced to 
introduce such a level of semantic representation, that we can do without 
it. Such a claim can not be substantiated in general, but it can be shown 
to be correct in particular cases. And the development of the DPL-system 
shows that, in the case at hand, the principle of compositionality has not 
only negative implications, but also points positively towards a satisfactory 
treatment of the issues involved. For the phenomena in question, no level 
of representation is needed, for compositionality clearly guides towards a 
notion of meaning which allows us to do without. 

Be that as it may, our appeal to this methodological principle will be 
waved by those who claim that there is empirical evidence for the existence 
of a level of semantic representation. In fact, quite often when such a 
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level of representation is postulated, this is accompanied by the claim that 
it is somehow psychologically 'real'. We must be careful in our evaluation 
here, for one might be making a weaker and a stronger claim. The weaker 
one is that in producing and understanding language, people somehow 
represent meanings, extract them from linguistic structures, manipulate 
them, 'put them into words', and so on. This claim is in fact subsidiary 
to the view of the mind as a calculating machine. Notice, however, that 
this weaker claim is not necessarily at odds with our parsimonious starting 
point. For, as such there may very well be a separate level of semantic 
representation, without it being a necessary ingredient of a descriptively 
and explanatorily adequate semantic theory. The stronger claim adds 
exactly this to the weaker one: it claims, not just the cognitive reality of 
representation of meaning, but the existence of a level of representation 
which carries information that goes beyond that what is represented there, 
viz., meaning. In effect, this view splits the intuitive notion of meaning in 
two: those aspects which are covered by the technical notion of meaning 
(or interpretation) that the theory provides (or borrows from other frame- 
works), and those which are accounted for by properties of the particular 
kind of representation of the former. 

Thus, a mentalist we call someone who claims that a level of representa- 
tion is necessary, not someone who merely claims that it exists. Should 
we include among the mentalists the latter kind of person too, we would 
be forced to consider the Wittgenstein of the Tractatus as a mentalist, for 
he claimed that there exists a level of thoughts and thought-elements 
which is isomorphic to language, and hence to the world. However,  he 
did consider this level completely irrelevant for an account of the nature 
of meaning and the way in which it is established. Thus Wittgenstein 
apparently accepted the existence of a level of 'semantic representation' ,  
but considered its existence of no interest for semantics proper. In connec- 
tion with this, it may be worthwhile to point out the close correspondence 
between the isomorphic 'picturing' relation between language and the 
world of the Tractatus, and the modern-day, algebraic explication of com- 
positionality, as it can be found, for example, in Janssen (1986). Of course, 
the later Wittgenstein would have discarded even any talk of a 'cognitive' 
sub-stratum of our linguistic behaviour, which may help to remind us that 
even the weaker claim is not as philosophically neutral as some apparently 
think it is. 

To return to the main point, we think that the stronger claim is unwar- 
ranted, and that it certainly cannot be justified simply by an appeal to the 
linguistic facts of the matter. As for the weaker claim, the view on the 
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mind and its operations that it stems from, when taken literally is, of 

course, not philosophically neutral. Those who really subscribe to it face 

the burden of showing that there are such things as 'mental '  representa- 
tions and the like, a task which is not without philosophical pitfalls. 

Notoriously, these issues are as interesting as they are undecidable. Our 
own opinion, for whatever  it is worth, is that the calculating mind is a 
metaphor  rather than a model.  It is a powerful metaphor ,  no doubt, on 

which many branches of 'cognitive'  science are based, and sometimes it 
can be helpful, even insightful. But it remains a way of speaking, rather  
than a true description of the way we are. However ,  whatever  stand one 

would like to take here, it does not affect the point we want to make,  
which is that it is bet ter  to try to keep ones semantic theory, like every 

theory, as ontologically parsimonious and as philosophically neutral as 
possible. The stronger claim goes against this, and hence has to be re- 
jected, unless, somehow, proven. 

As for the weaker  claim, subscribing to it or not makes  no real differ- 
ence, but one has to be careful not to let it interfere with the way one 

sets up ones semantic framework.  The best way to go about,  then, is to 
carry on semantics as really a discipline of its own, not to consider it a 
priori a branch of cognitive science, and to enter  into the discussion of 

the reality of mental  representations in a 'modular '  f lame of mind. 
It may be the case, though, that for some the acceptance of a level of 

logical representat ion springs forth from a positive philosophical convic- 

tion, viz., a belief in the deficiencies of natural language as a means to 
convey meaning. Now such there may be (or not) when we consider 
very specialized kinds of theoretical discourse, such as mathematics,  or 
philosophy, or particle physics. And again, natural language may be de- 
ficient (or not) when we consider a special task that we want to be 

performed in a certain way, such as running a theorem prover  based on 
natural deduction on natural language sentences, or such a thing. In such 

cases, clearly there is room for extension and revision, for regimentation 
and confinement.  But that is not what is at stake here. Here ,  it turns 
on the question whether  natural language structures themselves, as we 
encounter  them in spoken and written language, then and there are in 
need of further clarification in order  to convey what they are meant  to 

convey. In this matter ,  semantics, we feel, should start f rom the premiss 
that natural language is all right. If  anything is a perfect means to express 
natural language meaning, natural language is. It can very well take care 
of itself and is in no need of (psycho)logical reconstruction and improve- 
ment  in this respect. To be sure, that means taking a philosophical stand, 
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too, but one that is neutral with respect to the question whether there is 
such a thing as an indispensable level of logical representation in seman- 
tics. As we said above, if such there is, this has to be shown, not taken 
for granted. 

Our ideological point of view concerning the status of mental represen- 
tations is in line with the methodological interpretation of the principle of 
compositionality. As was already remarked above, this interpretation not 
only forces us to reject certain approaches to the problems we started out 
with, it also positively suggests us a proper  solution. Compositionality 
dictates that the meanings of (23) and (24) should be functions of the 
meanings of their parts. We take it to be an obvious fact that the immedi- 
ate components of the sequences of sentences (23) and (24) are the two 
sentences of which they consist. Because of the difference in acceptability 
we cannot but conclude that the first sentence of (23) and the first sentence 
of (24) differ in meaning. Accepting the fact that their truth conditions 
are the same, this leads to the inevitable conclusion that truth conditions 
do not exhaust meaning. ( 'Do not exhaust mean ing . .  ,', because we do 
want to stick to the idea that truth conditions are an essential ingredient 
of meaning.) What compositionality strongly suggests, then, is that we 
look for an essentially richer notion of meaning of which the truth con- 
ditional one is a special case. Our claim is that the kind of dynamic 
semantics that DPL is an instance of, naturally suggests itself as a first 
step on the right track. 
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